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Microscopic design of a synthetic spin-1 chain in an InAsP quantum dot array
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We present here the steps enabling the microscopic design of a synthetic spin-1 chain in an InAsP quantum dot
(QD) array embedded in an InP nanowire. The chain is described by a two-leg multiorbital Hubbard Kanamori
(HK) model with parameters obtained from the microscopic calculations of up to eight electrons in a single
and double QD. In this HK model describing long arrays of QDs, using both exact diagonalization and matrix
product state (MPS) tools, we demonstrate a fourfold quasidegenerate ground state separated from excited states
by a finite energy gap similar to a Heisenberg spin-1 chain in the Haldane phase. We demonstrate characteristic
behavior of spin-% quasiparticles at the edges of the chain by observing the magnetic field dependence of
the low-energy spectrum as a function of the applied magnetic field. The applied magnetic field isolates the
singlet and S° = O triplet states from the other triplet components emulating a singlet-triplet qubit but with
macroscopic quantum states. Most importantly, the regions in parameter space where the low-energy spectrum
of the multiorbital Hubbard chain yields a Heisenberg spin-1 chain spectrum are mapped out.
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I. INTRODUCTION

The development of solid-state quantum information pro-
cessing devices and topological quantum matter is currently
a research area of great interest [1-5]. At the moment,
qubits developed for commercial use are superconduct-
ing [6-8], trapped ion [9,10], electron spin [11-14], and
photonic qubits [15-17] due to their robustness and scal-
ability [15,16,18-20]. Despite their merits, these qubits
are not immune to the challenges of decoherence. Conse-
quently, there is an ongoing quest to engineer topologically
protected qubits that could potentially overcome these limi-
tations [21-23]. There has also been recent interest in using
spin chains as databuses [24-26] and spin clusters as coded
qubits [27-29]. Spin-1 chains are prototypes of topolog-
ical strongly correlated quantum matter hosting Haldane
spin—% quasiparticles [30-32] at its edges. Potential appli-
cations of spin—% quasiparticles as qubits [21,33] have been
suggested [33-35]. A synthetic spin-1 chain could be real-
ized using gated triple quantum dots (QDs) [34], an array
of semiconductor QDs in a nanowire [33,36], a chain of tri-
angular graphene QDs [37-39], and in two-orbital Hubbard
models [40]. Here, we discuss the atomistic design of a syn-
thetic spin-1 chain hosting a macroscopic quantum state with
Haldane quasiparticles using a semiconductor QD array in a
nanowire filled with electrons.

Previous effective mass and Heisenberg-model-based spin
calculations suggested that such a macroscopic quantum state
can be realized using a chain of InAsP semiconductor QDs
with four electrons each in a InP nanowire [21,33,36]. Further-
more, it has been shown through microscopic calculations that
the ground state of a single InAsP QD in a nanowire is a spin
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triplet and that the low-energy spectrum of an array of two
InAsP QDs in an InP nanowire is similar to the spectrum of a
Heisenberg chain of two spin-1 particles [36]. The parameters
of this two-site Heisenberg Hamiltonian were used to extend
the Heisenberg spin-1 chain.

Here, instead of an effective Heisenberg Hamiltonian, we
derive and use an effective multiorbital Hubbard model with
parameters obtained from microscopic atomistic calculations.
We determine a set of microscopic parameters for which a
long macroscopic QD chain with four electrons each has
a fourfold quasidegenerate ground state separated from the
quintuplet state by a finite energy gap, similar to a Heisenberg
spin-1 chain. We also show that, at low energies, the electrons
in a QD array behave the same way as two coupled spin-%
quasiparticles would in a magnetic field.

Furthermore, we show that the length of the array controls
the singlet-triplet splitting, while the Zeeman splitting of the
nonzero spin-triplet states allows us to isolate the quasidegen-
erate singlet and triplet states from the quintuplet allowing
the two isolated states to emulate the two-electron singlet-
triplet qubit [29,41]. We then demonstrate that the multiorbital
Hubbard parameters which result in a Heisenberg spin-1 chain
model form sizable regions in parameter space. Determining
these parameters allows for the finetuning of the spectral gap.
The parameters are tuned by controlling the size and As con-
centration of the InAsP QD as well as the interdot distance and
material of the QD array enabling the construction of synthetic
spin-1 chain.

The paper is organized as follows. First, we define the
multiorbital Hubbard model in terms of individual QDs and
the interaction between them. We then describe the method-
ology of the calculations which include exact diagonalization
and density matrix renormalization group (DMRG) in the for-
malism of the matrix product state (MPS) [42—-44] approach.
Next, we analyze the low-energy spectrum as a function of

©2024 American Physical Society


https://orcid.org/0000-0002-0990-6920
https://orcid.org/0000-0002-2908-4645
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.085112&domain=pdf&date_stamp=2024-02-08
https://doi.org/10.1103/PhysRevB.109.085112

MANALO, MIRAVET, AND HAWRYLAK

PHYSICAL REVIEW B 109, 085112 (2024)

(a) 10% InAsP (b)

InP

Ay
@®

FIG. 1. (a) Hexagonal InAsP quantum dot (blue) in an InP
nanowire (yellow). (b) Charge densities of single particle states.

array size and discuss the behavior of the chain in a magnetic
field. Finally, we map out regions in parameter space where
the multiorbital Hubbard model gives a low-energy spectrum
that resembles that of the Heisenberg spin-1 chain.

II. InAsP QD ARRAY IN AN InP NANOWIRE

We aim to realize a synthetic spin-1 chain with an array
of InAsP QDs embedded in an InP nanowire. The QD array
is constructed with a single InAsP QD shown in Fig. 1(a) as
a building block. It has been shown that a synthetic spin-1
object is formed when four electrons are injected into the
InAsP QD [36]. With each InAsP QD acting as a spin-1
object, we construct a synthetic spin-1 chain with an array of
these InAsP QDs, as shown in Fig. 2.

The microscopic calculations for one and two InAsP QDs
embedded in an InP nanowire serve as the foundation for
the effective multiorbital Hubbard model that describes the
InAsP QD array. Essentially, the microscopic calculations
begin with ab initio-based tight-binding model [36,45-47]
where the QD nanowire is created by first building an InP
matrix and defining a hexagonal nanowire inside, as shown in
Fig. 1(a), where random P atoms are replaced with As atoms
at a concentration of, for example, 10%. Figure 1(b) shows
the probability densities of the single-particle states obtained
from the tight-binding model. Despite the random distribution
of As atoms, the spectrum consists of a well-defined s shell
followed by two states of a p shell.

Furthermore, it was shown that, when four electrons were
inserted into the QD, two of the electrons filled the s shell,
leaving the other two electrons to form a triplet state on the p
shell. The many-body calculations of the N electron complex
were done using the configuration interaction method for the
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FIG. 2. A chain of InAsP quantum dots (blue) embedded in an
InP nanowire (yellow). Red arrows indicate electrons with corre-
sponding spin.

Hamiltonian given by

I, ;
Hyg =Y Eclci+ 3 > GjIVIkDclcfeer, (1)
i ijkl

where E; is the energy of single particle state i, cj (¢;) is the
creation (annihilation) operator for an electron on state i, and
(ij|V |kl) is the Coulomb matrix element where two electrons,
one in state i and another in state j, scatter to states k and
I. Likewise, the many-body spectrum of two QDs, each with
four electrons, resembled the spectrum of two coupled spin-1
particles. The limitation of these microscopic calculations ex-
tended to a long chain of QDs is that they are computationally
expensive. Computing such arrays where each QD contains
millions of atoms, with each atom containing 20 spin-up and
spin-down orbitals, and four electrons per QD is presently
not possible. Since the formation of Haldane quasiparticles
requires a chain of many synthetic spin-1 quasiparticles, it
is necessary to use a simplified model that still captures the
physics of a spin-1 chain.

III. THE MULTI-ORBITAL HUBBARD MODEL

We now turn to the effective multiorbital Hubbard model
to describe the QD array shown in Fig. 2. In this model, each
QD is described as a site with two p orbitals, p_ and p,.
Here, s-shell electrons are ignored because the probability of
s electrons scattering to the p shell is negligible due to the
large s-p splitting in the microscopic single-particle spectrum.
Exchange interaction of additional two electrons half-filling
the p shell can ferromagnetically couple their spins to form a
synthetic spin-1 state, as shown schematically in Fig. 2.

To retain essential microscopic description of the QD, we
reduce the microscopic Hamiltonian in Eq. (1) to the effective
multiorbital Hubbard Hamiltonian for a single QD as given
below:

. Jip
Hy(i) = Uy Xa:nimnm + (Uz - T/)ni—nH-

A
§
— J]/zsi_ . Si+ + E ;; CiwoCiBo s 2)

where «, 8 € {—, +} denote the orbital indices, o € {1,
1} denotes spin, and nj, = ), niyo is the number of elec-
trons in orbital o in QD i. This Hamiltonian, as well as the
Hamiltonian for a chain of QDs, is derived from the micro-
scopic Hamiltonian by employing certain approximations to
the Coulomb matrix elements, as described in Ref. [36].

The first term is the Hubbard term, which describes the
energy U, required for spin-up and spin-down electrons to
occupy a single orbital. The second term describes the cou-
pling between electrons on the p_ and p. shells with energy
(Uz — J12/4). Here, U; is the direct Coulomb interaction be-
tween an electron on p_ and an electron on p_, and J;  is the
exchange between them. In general, U; and U, differ in value,
but for the systems we are interested in, Uy = U, = U. The
following Ji,» term describes the Heisenberg ferromagnetic
coupling between p_ and p. electrons, which is not to be con-
fused with the effective Heisenberg spin-1 coupling between
QDs, hence the subscript 1/2 in the coupling constant Jj 5.
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This spin—% coupling arises from the exchange interaction
between electrons on different orbitals. Finally, the last term
describes the p-shell splitting due to the broken lateral sym-
metry of the QD from the random distribution of As atoms,
where the energy splitting A is the splitting between the p,
and p, orbitals which are both linear combinations of p_
and p..

To compute the spectrum of a chain of QDs, we must in-
clude the interaction between the QDs. The total multiorbital
Hubbard Hamiltonian is now given by

H=) |:Ho(i) 1) (€l Cirtar + H.c.)} VY mimi,

3

which is the sum of all single-QD Hamiltonians in the array
and the interactions between nearest-neighboring dots. The
first term that describes the interdot interactions is the tun-
neling term fc} _cit1q0, Which describes the process of an
electron hopping from QD i to the nearest-neighbor QD i + 1
with a hopping energy ¢. The second term of the interdot
interaction portion of the Hamiltonian describes the elec-
trostatic interaction between electrons on neighboring QDs.
Here, n; € [0, 4] is the electron occupation of dot i, and V
is the Coulomb matrix element, which is direct with respect
to the dot index and is defined to be V = (i, jB|V|jB, ia),
where o, 8 € {p+, p—}.

The two most important terms in determining the behavior
of the system as a spin-1 chain are the intradot exchange term
—Ji2>;Si- - Siy, which describes the spin-spin coupling
between a p_ electron and a p, electron, and the tunneling
termzy ;> czm Citlao - The intradot exchange term, which
controls the electronic behavior of the QD as a spin-1 object
is compromised by the tunneling term, which breaks the spin-
1 apart. Without the interdot tunneling term, however, the
singlet, triplet, and quintuplet states of the QD array will all
be degenerate, which means that there is no finite gap in the
spectrum.

The single dot parameters Uy, Us, Ji,2, and A and multidot
parameters ¢ and V were obtained by fitting the spectrum of
Eq. (3) to the microscopic tight-binding spectrum of a two-
dot array using a genetic algorithm. This effective multiorbital
Hubbard model with parameters obtained from microscopic
calculations allows us to simulate an array with many dots so
that we can construct the synthetic spin-1 chain.

IV. METHODOLOGY

In this paper, we compute the many-body spectrum of
electrons in a large chain of QDs using the multiorbital Hub-
bard model and configuration interaction and DMRG tools to
demonstrate the similarity to the spectrum of a spin-1 chain
with two Haldane spin—% quasiparticles. Next, we apply a
magnetic field to the QD chain to determine the spin character
of the Haldane spin—% quasiparticles at the edges. Finally,
regions in parameter space, i.e., the parameters in Eqgs. (2)
and (3), where the Hubbard chain produces a Heisenberg
spin-1 chain spectrum, are mapped out.

All calculations of spectra of arrays with two QDs
are done with exact diagonalization, while calculations

TABLE I. Multiorbital Hubbard parameters for the QD chain.

Parameter Value (meV)
U 15.971
Jip 5.000

A 0.844

t 2.389

\% 8.05

of spectra of larger arrays are done with the DMRG
algorithm [42,43,44]. In this paper, we used iTensor and a tool
that we developed called Python MPS (PyMPS) to perform
the DMRG calculations [48,49].

Table I shows the multiorbital Hubbard model parameters
that were obtained from microscopic calculations from our
previous work of a double-QD array, where the dot diam-
eter and height are 18.2 and 4.1 nm, respectively, and the
interdot distance was taken to be 10 nm [36]. An important
feature of the multiorbital Hubbard chain is the similarity of
its low-energy spectrum and the spectrum of a spin-1 chain.
However, the similarity to the spin-1 chain spectrum is de-
pendent on the choice of multiorbital Hubbard parameters.
This is evident with the example of a chain of two QDs. The
spectrum of the two-QD array is shown in Fig. 3(a), where
the parameters except for Ji,, and t are taken from Table I.
While the Heisenberg spin-1 chain spectrum is reproduced
with the parameters shown in Fig. 3(a), it is not reproduced
when those parameters are changed, as shown in Fig. 3(b).
The dependence of the spectrum on parameters allows us
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FIG. 3. Low-energy spectra of two quantum dots with two differ-
ent sets of parameters. (a) The spectrum shows the spin-1 spectrum
criterion satisfied, while (b) is an example where the criterion is not
satisfied. All parameters are in meV.
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FIG. 4. Parameters used are in Table 1. (a) Low-energy spectrum
of a chain of 50 quantum dots (QDs) using the multiorbital Hubbard
model (MOH). (b) Low-energy spectrum of a QD array as a function
of array size using various models. E; and E, denote triplet and
quintuplet energies, respectively. All energies are shifted so that the
singlet energy, which is not shown, is zero. The inset shows an
enlarged section of the plot from L = 48 to 50 dots.

to define a criterion for Heisenberg spin-1 chain behavior.
The criterion is such that, when the multiorbital Hubbard
spectrum replicates the spin-1 chain spectrum, as shown in
Fig. 3(a), the criterion is satisfied; otherwise, as illustrated
in Fig. 3(b), when the spectrum of the spin-1 chain is not
replicated, the criterion is not satisfied. This principle applies
to long arrays of QDs. For L = 50 QDs, the S* = 0 Hilbert

space of the HK model at half-filling is (15%0)2 ~ 10°%. For
such a large Hilbert space, we apply MPS-DMRG tools to ob-
tain the low-energy spectrum. Figure 4(a) shows an example
where a chain of 50 QDs satisfies the spin-1 chain criterion.
This criterion applies to any size of QD array and will be
imperative to map out regions in parameter space where the
system behaves as a chain of spin-1’s.

The low-energy spectrum of the long chain shown in
Fig. 4(a) illustrates the behavior of two uncoupled spin-%
quasiparticles. While Fig. 3(a) shows that the two-dot array
resembles two spin-1’s, Fig. 4(a) shows that the chain of many
QDs resembles a chain of many spin-1 particles, which is
understood in terms of two Haldane spin-% quasiparticles at
the edges. To illustrate the spectral gap, the spectrum of the
multiorbital Hubbard Hamiltonian as a function of system size
shown in Fig. 4(b) was computed and compared with that of
the Heisenberg spin-1 chain.

The spectrum of the Heisenberg spin-1 chain was com-
puted using the Heisenberg Hamiltonian given by
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FIG. 5. Multiorbital Hubbard spectra as a function of magnetic
field guB for (a) L = 20 and (b) L = 50 quantum dot arrays. The
§* = 0 Haldane quasiparticle states are highlighted in the dashed
square.

where J; = 2t2/(U + J‘% — V) is the effective Heisenberg
spin-1 coupling, which is analytically obtained by treating the
tunneling term in Eq. (3) as a perturbation [50].

We then added the term guBS% , to Eq. (3) to study
the behavior of the QD array as a function of applied mag-
netic field. Using a chain of 20 and 50 QDs, we determined
the array size required for the singlet-triplet splitting in
Figs. 5(a) and 5(b) to be small enough to avoid unwanted level
crossings.

Finally, to determine the set of multiorbital Hubbard pa-
rameters where the array gives a Heisenberg spin-1 chainlike
spectrum, we set the following criterion: If the spectrum con-
sists of a singlet ground state, followed by a triplet first excited
state, then followed by a quintuplet second excited state with
no other states in between, then the criterion is satisfied.

Figure 3 shows an example of a spectrum that satisfies the
Heisenberg spin-1 criterion and another example that does
not. In Fig. 3(a), r = éjl /2, which is still in the perturbative
regime, while in Fig. 3(b), t ~ Jj,; thus, the spin-1 descrip-
tion is no longer valid. Unlike the Heisenberg spin-1 chain
spectrum, there are intermediate singlet and triplet states that
appear below the quintuplet energy due to the coupling of the
ground-state singlet and triplet to the higher-energy configu-
rations that contain triple-electron occupation in a dot [36].
We then map out the regime in parameter space where this
criterion is satisfied for a 16-QD system.
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V. RESULTS

One of the ways to determine the spin-1 chain charac-
teristics of the QD array is to observe a quasidegenerate
singlet-triplet ground state with a gap that separates the
ground state from the quintuplet state in the low-energy spec-
trum. Like the multiorbital Hubbard spectrum for two QDs in
Fig. 3(a), the spectrum of a chain of many dots in Fig. 4(a)
also consists of a ground-state singlet followed by triplet and
quintuplet states. The difference is that, unlike the spectrum of
two QDs, the singlet and triplet states in the spectrum of the
large chain are almost degenerate with a splitting of 0.05 meV
and are separated by a spectral gap from the quintuplet state.
The almost degenerate singlet-triplet states along with the
spectral gap are indications of the existence of Haldane spin-%
quasiparticles at the edges. To demonstrate this point further,
we show the energy of singlet and triplet states as a function of
system size in Fig. 4(b). We see that the singlet and triplet be-
come almost degenerate, while the singlet-quintuplet energy
gap approaches a value of ~0.29 meV.

The same behavior is observed in the spectrum of the
Heisenberg spin-1 chain in Fig. 4(b), where the spectral gap
is 0.45 meV. This spectral gap is known as the Haldane gap.
Though the spectral gap for the multiorbital Hubbard model
is only ~65% of the spectral gap in the Heisenberg spin-1
chain spectrum, this level of agreement is to be expected,
considering the fact that the ground state of a two-dot mul-
tiorbital Hubbard model given these parameters is in ~70%
agreement with the ground state of a two-site Heisenberg
spin-1 chain, as seen in the overlap integral which was calcu-
lated in Ref. [36]. Next, we apply a magnetic field by adding
Zeeman energy to demonstrate that the QD array behaves
the same way as two spin-% particles would in a magnetic
field and to show that the S* = O triplet and singlet can be
isolated in analogy with two electron singlet-triplet qubit
basis. The spectra for 20 and 50 QD arrays as a function
of an applied magnetic field are shown in Fig. 5. In both
the L = 20 and 50 cases, the Zeeman splitting between the
triplet components increases as a function of magnetic field,
while the singlet remains unaffected, which is also the case
for two coupled spin—% particles. With the inclusion of the
Zeeman splitting of the quintuplet components, this system
behaves as a Heisenberg spin-1 chain would under a magnetic
field.

For the low-energy spectrum made of Haldane quasiparti-
cles, we expect the S° = +£1 triplet components to split away
and isolate the S* = 0 triplet and singlet in a magnetic field.
At higher energy, we expect quintuplet states outside the Hal-
dane quasiparticle manifold. The $* = —2 quintuplet made
of spin-1 states crosses the S* = 0 triplet made of Haldane
quasiparticles. This does not happen with the L = 20 chain,
as seen in Fig. 5(a), where at about guB = 0.24 meV, the
S§* = —1 triplet begins to cross below the singlet, but by then,
the lowest-energy quintuplet already crossed below the $° = 0
triplet. For the L = 50 chain, the singlet-triplet splitting at
zero fields is small enough such that isolation of the zero sin-
glet and triplet occurs before any quintuplet crossing occurs.
At about guB = 0.07 meV, as seen in Fig. 5(b), the nonzero
triplets isolate the S° = 0 states before the lowest-energy quin-
tuplet crosses even the S* = +1 triplet.

Spin-1 chain regime diagrams for 2 dots
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FIG. 6. Spin-1 chain spectrum criterion as a function of various
multiorbital Hubbard parameters for an array of two quantum dots.
Yellow (or green) region is where the criterion is satisfied, and blue
is otherwise. (a) Diagram of # and J;», (b) diagram of U/t and J,»,
(c) A vs Jy, and (d) A vs Jy, at different values of ¢, where all the
values of ¢ are in units of meV.

It is also useful to construct a synthetic spin-1 chain with
other parameters. These multiorbital Hubbard parameters de-
pend on the material, QD As concentration, interdot distance,
and QD size. Varying these parameters would vary the spectral

gap since J; « ,’]—7 [50]; hence, it is important to find
U+ -v

which parameters would yield a synthetic spin-1 chain.

We map out regions in parameter space for 2- and 16-dot
arrays, where the Hamiltonian in Eq. (3) produces a spin-1
chain spectrum, that is, regions where the spectrum consists
of a singlet ground state, a triplet first excited state, and a
quintuplet second excited state. In both Figs. 6 and 7, there
are clear regions in parameter space where a spin-1 spectrum
is produced as opposed to random points sporadically dis-
persed. We decided to omit the parameter V from the diagrams
because the term containing this factor only contributes a
constant shift to the low-energy spectrum due to all of the
orbitals in these states having single occupation.

In Fig. 6(a), we see a tunneling matrix element ¢ varying
linearly with Jj, at the boundary. Moreover, Fig. 6(b) shows
a J% dependence of U at the boundary, which is expected

because of the linear dependence of ¢ on J;,, at the boundary
in Fig. 6(a). In Fig. 6(c), we see a linear dependence between
A and J at the boundary. Furthermore, varying ¢ at different
cross-sections of the A-Jj,, plane, as shown in Fig. 6(d), does
not vary the slope of the boundary. However, the J; /, intercept
increases with ¢.

Since the appearance of Haldane quasiparticles requires
long chains, we also map out regions in parameter space
where a spin-1 chain spectrum is produced for a 16 dot system
in Fig. 7. Similar trends to the 2-dot diagrams are seen in the
16-dot diagrams. For instance, linear dependence of t on J»

085112-5



MANALO, MIRAVET, AND HAWRYLAK

PHYSICAL REVIEW B 109, 085112 (2024)

Spin-1 chain regime diagrams for 16 dots

10 20
(a) (b)
8<
3 <’
& 6 2
:’ 104
4<
24 37
0 T T 0 T : :
0 10 20 30 0 5 10 15 20
4
(©)
— 3-
¢
Z 9+
<
1_
G T T T T
0 2 4 6 8 10

Ji/2 (meV)

FIG. 7. Spin-1 spectrum criterion as a function of various multi-
orbital Hubbard parameters for an array of 16 quantum dots. Yellow
region is where the criterion is satisfied, and blue is otherwise. All
parameters are the same as the ones used in Figs. 4 and 5 except for
those that are varied.

at the boundary where the spin-1 chain criterion is satisfied
is shown in Fig. 7(a). The 11% dependence in Fig. 7(b) is also
seen as well as the linear dependence of A on Jj; in Fig. 7(c).

The two lowest-energy eigenstates for a single QD with
two electrons in the p shell are a triplet ground state and
a singlet first excited state separated by an energy E; =

Mm@ [36]. If another QD is placed beside the first
one, the orbitals in different dots are coupled by the hopping
term tch,-Ha. We see the effect of hopping in the spectrum
of four electrons on two QDs in the splitting of the singlet
and triplet double QD states, where in this case, the singlet is
the ground state and the first excited state is a triplet. In the
regime where the hopping term in Eq. (3) is weak, the singlet-
triplet splitting is proportional to the effective Heisenberg
spin-1 coupling J; = 2¢2/(U + Ji2/2 — V). This introduces
the condition J; < E, which can be interpreted as the values
of ¢+ which conserve the spin-1 character of each QD in the
array. This condition can shed light on Figs. 6 and 7.

Increasing Ji/, increases the singlet-triplet splitting for a
single QD, protecting the spin-1 character of each dot against
perturbations according to the analytic expression of Es;. This
behavior is observed in Figs. 6 and 7, where the Haldane phase
is favored whenever J;,, is increased. On the other hand, an
increase in the hopping energy ¢ mixes the single QD ground
and excited states, destabilizing the Haldane phase, which
is also observed in Figs. 6(a) and 7(a). Similarly, increasing
the p-shell splitting A decreases the singlet-triplet gap in a
single QD, eventually producing a ground state that is a singlet
instead of a triplet in the case when E;; < 0, losing the spin-1
behavior of each QD.

In Figs. 6(c) and 7(d), the competition between J;,, and
A terms can be seen directly. Particularly, in Fig. 6(d), the
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FIG. 8. (a) Ratio between the singlet-triplet and triplet-quintuplet
gaps Agr/Arg for a chain with a length of L =20 as a function
of Ji>. Expectation value of magnetization per quantum dot (QD)
in the state |S, S;) = [1, 1), for (b) J;,» = SmeV, (¢) Ji» = 10meV,
(d) Ji2 = 20meV, edge states with s, ~ % are present at the ends of
the chain.

combined effect of varying A with the hopping term ¢ and J;
is shown. When the hopping energy ¢ is increased, J;,» must
also increase even for negligible A to stabilize the Haldane
phase. This is the reason behind the increasing of the J;,»
intercept as t increases.

In Fig. 8(a), we present the ratio between the singlet-triplet
gap Agr and triplet-quintuplet gap Arg as a function of J,
for a chain with a length of L = 20. As J;; increases, the ratio
decreases. This observation aligns with the concept we previ-
ously discussed regarding the influence of J;,, on isolating
the spin-1 character of the QD. Furthermore, Figs. 8(b)-8(d)
show the expectation value of magnetization per QD in the
state |S, S;) = |1, 1), revealing a clearer spin—% edge fraction-
alization for the larger value of J;,», which is characteristic of
a Haldane chain [51]. Remarkably, while individual spins are
limited to magnetization values of 0, 1, this result shows the
emergence of spin-% quasiparticles localized at the edges of
the chain. As the chain length increases, the coupling between
these % quasiparticles decreases, elucidating the degeneracy
observed between triplet and singlet states in macroscopic
chains.

VI. CONCLUSIONS

We presented here the steps enabling the microscopic
design of a synthetic spin-1 chain in an InAsP QD array.
The multiorbital Hubbard model derived from a microscopic
atomistic Hamiltonian is used to describe the electronic spec-
trum. A degenerate singlet-triplet ground state followed by
a spectral gap separating the ground state from the quin-
tuplet state is observed in the low-energy spectrum of the
multiorbital Hubbard chain. This behavior is also observed
in the spectrum of a Heisenberg spin-1 chain, indicating
the existence of spin-% Haldane quasiparticles at the edges

of the chain. Further indication of the existence of spin-%
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quasiparticles is the behavior of the low-energy spectrum as
a function of applied magnetic field. Despite the system being
a chain of synthetic spin-1’s constructed using an InAsP QD
array with exponentially growing Hilbert space, the magnetic
field dependence of the spectrum is the same as that of two
spin-% quasiparticles. The external magnetic field also allows
the S* = O triplet and singlet quasiparticle states to be isolated,
emulating states of an electronic singlet-triplet qubit. For the
design of Haldane quasiparticles, the regions in parameter
space where the low-energy spectrum of the Heisenberg spin-
1 chain is reproduced with the multiorbital Hubbard model are
mapped out.
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