Chapter 3

Methods of analysis of confined

many-particle systems

In the previous Chapter I have presented a detailed description of single-particle properties
of nanostructures with various symmetries. It was the first, necessary step towards the
main goal of this work - a description of the behaviour of many particles confined in these
potentials, with a special emphasis put on correlation effects. To be able to achieve this
goal, I have to develop methods capable of describing the systems of many interacting
particles with sufficient accuracy. This Chapter contains a detailed presentation of my
method of choice - the exact diagonalisation technique. I have chosen this method because,
if properly used, it allows to account for all the interaction effects: direct and exchange
Coulomb terms as well as particle-particle correlations, since the results it produces are
eract.

My description will start with the mean-field Hartree-Fock approximation, accounting
only for the direct and exchange Coulomb terms. Then I will begin the construction of
the exact diagonalisation method by discussing two different ways of constructing the

many-particle basis set: configurations of electrons distributed on single-particle states,
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and configurations of quasiparticles distributed on Hartree-Fock orbitals. T shall also
discuss possible optimisations of this basis set, obtained by explicitely accounting for all
the symmetries of the system. I shall also compare this method with other approaches,
more approximate and less controllable, but nevertheless capable of accounting for the
correlations. These methods are the density functional theory in the local spin density
approximation, and the quantum Monte Carlo method.

But before I move on to the methods, I will first formulate a general definition of the

problem of many interacting particles confined by a QD potential.

3.1 The problem of many interacting particles in a

QD confinement

3.1.1 The many-particle Hamiltonian

The Hamiltonian of N interacting electrons confined by the potential U(r) of the nanos-

tructure and in the presence of an external magnetic field can be written in the form:

1
2m*

(fni + SAZ-)2 + U(ri)] + % P (3.1)

i#] elri — x|’

where the notation corresponds to that introduced in Chapter 2. The first term in the
above Hamiltonian introduces the single-particle QD spectrum for each confined particle,
and has been considered in the previous Chapter. The second term is new - it describes
the particle-particle Coulomb interactions.

The notation of my analysis will become particularly simple if I express the Hamilto-
nian in the language of the fermionic creation and annihilation operators. They will be
denoted by c;> and c;,, respectively. These operators create (annihilate) a particle on the
single-particle orbital ¢ with spin o. Here ¢ is a composite orbital index, denoting (n,m)

in the case of the parabolic potential, (n, m, 1) in the case of the quantum disk, and m in
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the case of the quantum ring. In the language of these operators the Hamiltonian takes

a simpler form

H =Y E(i,o)ccis + 3 Z (io, jo'|V|ka', lo)ch ¢l CrorCis- (3.2)

io ijkloo’

Now the summation extends over all single-particle orbitals.
Creation operators also allow for a concise notation regarding many-particle states.
In their language, a configuration obtained by distributing N electrons on single-particle

orbitals can be written as

|i101,7:202, .. .,iNUN> = CZUIC?;UQ e C;‘;VUN‘()), (33)

where |0) denotes the vacuum. The equivalent of the above configuration, written in real
space, is the Slater determinant built out of orbitals ¢o. The antisymmetry of the state
is guaranteed by the Fermionic anticommutation rules of the creation and annihilation
operators:
{cf, ¢ ci} ={eci, c;} = 0; {cz-,c;’} = 0;j. (3.4)
The configurations constructed in such a way are not eigenstates of the many-body Hamil-
tonian (3.2), since these states are built out of the single-particle orbitals, and the Coulomb
interaction can scatter particles between these orbitals. But the exact eigenstates of the
interacting system can be written as linear combinations of many such configurations.
The question of what these combinations should be is the central question of this thesis.
To complete my definition of the many-body problem, I have to define the Coulomb
matrix element (i, j|V'|k,[) appearing in the Hamiltonian (3.2). In general these matrix

elements can be constructed by carrying out the real-space integration:

/ Wyor (7
/drl/d ry w 1'1 ]a (1‘2) k (1‘2) l(rl)‘

r; — 1y

(i, jo' |V ko', lo) (3.5)

In the remainder of this thesis I will be particularly interested in the matrix elements in
the parabolic confinement. The orbitals ¥(r) are then the harmonic-oscillator states. In
this case the matrix elements can be obtained analytically in a closed form. I shall present

a detailed description of their evaluation in the next Section.
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3.1.2 Coulomb matrix elements in the harmonic-oscillator basis

In this Section I calculate analytically the electron-electron Coulomb scattering matrix
elements in the basis of the two-dimensional harmonic-oscillator orbitals. This calculation
is similar to that presented in Ref. [127]. The final form of the Coulomb matrix elements
in this basis was first given in Ref. [52], and later also reported in Ref. [34, 70].

In the units of effective Rydberg and effective Bohr radius (see Section 2.2) the part of

the Hamiltonian (3.2) describing the electron-electron Coulomb scattering can be written

as:
1
Hg = 5 > (iojo'lv|kd'lo)ehclicrorcio, (3.6)
ijkloo’
where
2
ol — ) = 2 3.7
(o= ral) = (37)

and the composite indices in the harmonic-oscillator basis i = (n,m}), j = (n), m}),
k = (ng,ma), I = (ny1, my).
Further I will use the coordinates x and y of each particle written in the language of

the harmonic-oscillator lowering and raising operators introduced in Section 2.1:

x=£(a+a++b+b+), yz&%(a—a*—b—l—b*) (3.8)

Let us start the analysis by unfolding the Coulomb interaction into the basis of plane
waves. In what follows I shall suppress the spin index ¢ of the orbitals, as it will play no

role in this derivation.

(iglofkl) = ([ {] qu A g)|1)
= qu (jleatr2 k)|1) = qu ile" ¥ |) (gl |k), (3.9)
with v, = 47” being the Fourier transform of the Coulomb term. This transform is calcu-

lated in the following way:

/drgeiqr =9 /oo rdr /27r d(brleiiqr cos(¢r—dq)
r 0 0 r
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27 oo .
= 2/ dr/ dor > (—i)memér=9a) I (1q)
4
= 47T/ drJo(qr) = q7r (3.10)

Let us calculate the first term of the sum (3.9) . Substituting the equations (3.8) I get
the form of the exponent:
ez‘(‘%‘(al+af+b1+bf)+i%(a1—af—bﬁ-b;‘))

eiql‘l

— @l +iQuiHiQbf +iQ b (3.11)

with Q) = %(qw +igq,). To disentangle the operators I will use the Trotter-Suzuki formula:
eAtB — gAeBe—3lA B}, (3.12)

applicable under condition [A,[A, B]] = [B,[A,B]] = 0. I have [agﬂ,bgﬂ] = 0, and
[iQ*a7,iQa;] = |Q|?* and also [iQb] ,iQ*b;] = |Q|?, so the conditions for the applicability

of the formula are satisfied for each pair of operators. I can now write

i@ af +iQa1+iQbT +iQ b1 _ QI 4iQ”af ,iQa1 LiQbY LiQ"b1 (3.13)
Analogously, only with the exception to sign in the exponent, I can write for the second
particle (second term in the sum (3.9)):

e~iars — o—|Q ~iQ"af ,~iQas ,—iQbT —iQ b2 (3.14)

Let us continue with the first particle. I need to calculate the element

M, = (ile” QP giQ ey ezQaleinreiQ*blm
1

[ \m Ingim !

X (00\bm1anle QP giQ"at i@  iQu1 ¢iQ" b (a)™ (7)™ |00) (3.15)

(there has been a slight rearrangement of order of operators - I can do that, since operators

a and b commute). The unit operator

o oo
= Z Z ‘p1p2 p2p1

P1=0p2=0 p1=0 :02=0

[c o IENNe o)

)7t (b7)72(00)(00] (b1)"* (a1)™
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I will also unfold the exponential operators in Taylor series, e.g:

elQar — i (ZQ)Saf (3.16)

|
s=0 S:

In this notation it is now clear that the indices p; and ps can change only from 0 to
min(n,n}) and from 0 to min(mq, m}), respectively. This is due to the fact that whenever
these upper limits are exceeded, there will occur a situation when the lowering operator a
or b will act on the lowest oscillator mode, giving zero as a result. Moreover, the matrix

element will be nonzero only for certain powers of operators a, a™, b and b*:

1 min(n,n}) min(mi,m}) e_|Q|2

M, = )

ni!mingtmi! pi=o om0 D1lpo!

(3.17)

X

L (O \—m ' -\, —pa '
(o0t I a0 ) 00)
N ni1—p1 Y()*\M1—p2
((:z?)_ p1)! () ((eri )_ p2)! (bu)™ 77 (e )™ (67)™ [00)-

x {00](b1)*(a1)”
From the above formula it can be seen why I chose these particular terms from the Taylor
expansion of exponents - right now the operators are aligned exactly to take the state
from |00) on the right-hand side to |njm}) (or |nym,)) and back. This is also why the
application of all these operators will result simply in multiplicative term n)!m/!n;!m,!.

This is in accordance to the rules of application of the raising and lowering operators, laid

out in Eq. (2.15). As a result one obtains:

min(ni,n}) min(mi,m})

M= e 2 am PRGDCICHE)

X(1Q°)" P Q)™ P2 (1Q)" T (7).
The matrix element for the second particle, M, can be calculated analogously, and will
look similarly to M;, only wherever I have the imaginary constant ¢ in M;, I will have
(—1) in M,. The formula for M, will also contain new indices of summation, ps and py.

Now I am able to put all the elements together and calculate

o 1 [e%s) 2 47
(ij|v|kl) = 4—7r2/o qdq 5 dqbq?MlMg
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1 mm%’nl) <TL1) (n )
= P1-
\/n’l!m’llnllmlln’zlmg!nglmgl p1=0 P/ \P1

min(m1,m}) Tn,1 my min(nz,n’) TL2 Ny min(ma,m,) m,2 My
p2=0 D2 D2 p3=0 D3 p4=0 D4 Py

1
X ;Impzpspu (3'19)

where the integral

OO o 1=D1 (;()\ML—P2 (5()\P1—P1 (;()*\ M1 —DP2
Ips = [ da [ dgge 297 (GQ ) (1Q)™ P (1Q) (i)™

X (—iQ*)"2 P (—iQ)™2 TP (—iQ) 2P (—i Q)™ P, (3.20)
To solve this integral I take the following steps:

1. Change of variables: 1 have @ = %(qw +igy). Let us write ) in the exponential

form: Q = |Q|e% = qe“ﬁ‘l I want then to set |Q] = so dg = d|Q\§. The

\/§Qa
angle is not affected. Further I drop the modulus sign by |Q)|.

2. Collect the moduli of @ (not including the sign) - I get

Qn’l +m} +n1+mi+nh+mh+na+me—2p1 —2p2—2p3—2pa.
I

3. Collect the phases of @ - I get e’®a(=mitmitm—mi—nytmy+ny—ma)

4. Collect the imaginary units ¢. I pick up all imaginary units (not including the sign)

and I get ( )n T+m +ni+mi+ny+mh+na+me—2p1 —2p2—2p3— 2p4

5. And finally collect the factors (—1) appearing for the second particle - I get (—1)"2FmaFn2t+mz—2ps—

! ! .
= (—1)m2tm2tm2tm2 hecause the other two terms in exponent are even.

My integral separates now into two integrals - the one over () and the one over ¢,. Let
us carry out the second one first. I get

27r N ! 7 ! !
i d¢qez¢q(—n1+m1+n1—m1—n2+m2+n2—m2) — 27T6RL,R37 (3_21)
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where Ry = (m} + mj) — (n} + n}) is the angular momentum of the pair of particles
on the left hand side of the matrix element (particles on orbitals i and j), and Rp =
(m1 4+ mg) — (n1 + ng) is the angular momentum of the pair on the right side (particles
on orbitals k£ and [). I have formally obtained the angular momentum conservation
rule.

From this rule I also obtain the identity ny + ne +m}| + mb = n{ +nl +my + ms. It
means that the long sums in the exponents of () and i can be written as n| + n}, + m} +
My +n1+12+mi+ma —2p1 — 2py — 2p3 —2ps = 2(n +nhy+my +My—pL—P2—P3 —Pa) = 2p.

Now the integral

27T\/§ * - 1\? nh,+ml+na+m
Ip1p2p3p4 = T/0 dQe 2Q2(2Q)2p (__) (_1) o tMmy+na+ma (322)

2
(in passing I multiplied and divided by 27). Let us do another change of variables: =z =

2Q?, so that dz = 4QdQ and dQ = 2. T get

I — f (_1)10 (_1)n’2+m’2+n2+m2 /oo dme—x(x)p—l—lﬂ—l
pip2p3pa T E 2 0

m 1\? nh+mh+na+m
_ Z<_§> (=1 tmetnatmap () 41 /9). (3.23)

The symbol I' denotes the Gamma function, which is the generalised factorial [1]. Now I

can collect everything together.
Sk, R (_1)n’2+m’2+n2+Tn2

1
€\ Jrdimd I i tnb I Ity

min(ni,n}) n, ny min(my,m]) m' my
p1=0 b1/ \DP1 pa—=0 D2 ) \ D2
min(ng,n}) min(mz,m}) !
TL o m e’
p3=0 Db3) \DP3 pa=0 D4 ) \ P4
1\? 1

x (—= | T - . 3.24
( 2) (p T 2) (3:24)

As can be seen, the Coulomb scattering matrix element in the harmonic-oscillator

(n'lm'l,n'Zm'2|v\n2m2,n1m1> =

basis can be expressed as a sum of generalised factorials. Let us write out explicitly some

of these elements. The most important one is the one with all indices equal to 0, i.e.,

o

(00, 00|v|00, 00) = f = F, = (3.25)

%
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Here & is the unit of exchange energy on the lowest Landau level, defined as

e V2
Eo =Y (00,0m[v]00, 0m) = 7” (3.26)

m=0
I choose the quantity Ey as the unit of Coulomb energy, and express all other Coulomb
matrix elements in its terms. For example,

(00,01|v|01,00) = 0.75Ey;

(00,01|v]00,01) = 0.25E.
The first of these two elements is the direct Coulomb term describing the repulsion of
two electrons, one occupying the orbital (n,m) = (0,0), and the other - the orbital
(n,m) = (0,1). This repulsion term is always nonzero, even if these electrons have
opposite spins. However, the second element describes the Coulomb exchange between
the two electrons, and it is nonzero only if the electrons have parallel spins. These spin
selection rules directly follow from the form of the matrix element shown e.g. in Eq. (3.5).
The spin of the two “inner” orbitals (the ones described by j and k) must be the same,
since these orbitals are integrated with respect to the same variable ry. Difference in
spins would lead to orthogonality of these orbitals, and would cause the matrix element
to be zero. The same is true for the two “outer” orbitals (the ones described by i and ).
These spin selection rules introduce another important symmetry of the Coulomb matrix
elements. Not only do they conserve the total angular momentum of the two scattered
particles, but also they conserve the z component of their total spin.

Here I shall also point out that the elements depend on the magnetic field only through
the length ¢ in the constant Ej. This is clearly a multiplicative constant, and Coulomb
matrix elements in different magnetic fields and in potentials with different characteristic
frequency wy can be obtained by a simple rescaling. The fact that they do not have to be
recalculated for each magnetic field and each potential makes these matrix elements very
useful in large-scale calculations, as I shall demonstrate later in this work.

The last remark concerns the numerical stability of the elements (i, j|v|k,[). As can

be seen from Eq. (3.24), these elements are long sums of factorials with alternating signs.
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For higher harmonic-oscillator orbitals most of these factorial terms become very large
in magnitude, but they have to reduce to a final value of order of 1 (and in practice
even smaller, since the element (00, 00|v|00,00) has the largest value of all the Coulomb
elements). Since the present-day computers can only store a finite amount of significant
digits per number, the matrix elements involving higher and higher orbitals will carry
greater and greater error. Interestingly, the accumulation of this error tends to lower
the total energy of the system. To avoid this spurious result, the matrix elements must
be calculated using computers with higher precision capabilities (for instance, quadruple
precision) or software packages capable of processing numbers with arbitrary precision
(such as Mathematica or Maple). In my calculations I have used the C++ high-precision

package called NTL, written by Victor Shoup [113].

3.2 The Hartree-Fock method

In Chapter 2 I have discussed the single-particle spectra of typical QD potentials, and in
the previous Section I have shown how the Coulomb scattering matrix elements can be
calculated for one of them - the parabolic lateral confinement. At this point all terms
of the Hamiltonian (3.2), describing the system of many interacting particles confined
in a QD, are known, and I may start analysing the properties of this system. However,
as I have already mentioned, the many-body problem defined by the Hamiltonian (3.2)
is very difficult to solve, and special methods have to be developed in order to account
for all aspects of the Coulomb interactions. The rest of this Chapter will be devoted to
describing these methods in detail.

I start the presentation of methods with the mean-field Hartree-Fock approximation.
This effective mean-field approach accounts for the direct and exchange Coulomb inter-
actions, but does not capture the correlation effects. In spite of that this method is of

interest, for two main reasons. First, its results can be compared to those obtained using
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more sophisticated approaches, which allows to isolate the effects introduced by corre-
lations from those due to the direct and exchange terms. The second reason has to do
with the form in which I write the exact eigenstates of my interacting system. In the
beginning of this Chapter I have mentioned that the exact eigenstates of the Hamiltonian
(3.2) can be written as linear combinations of configurations ¢, ¢ ,, ... ¢}, |0), created
using the single-particle orbitals. In the regime of strong interactions I deal with strong
configuration mixing, which causes these linear combinations to involve many terms. How-
ever, instead of distributing the particles on single-particle orbitals, I can also build my
configurations by distributing the quasiparticles dressed in interactions on the effective
Hartree-Fock orbitals. Since these orbitals already partially account for Coulomb inter-
actions, the configuration mixing in this case is weaker, and one may expect that good
approximations of the eigenstates of the system will take the form of linear combinations
with fewer terms.

The Hartree-Fock approximation is usually formulated in real space, and involves
self-consistent solving for the renormalised orbitals of each electron in the presence of
the external confinement and the effective potential created by the Coulomb direct and
exchange interactions with all other electrons [19]. In my approach I use the language
of creation operators, and write the wave function of the N-electron system as a single

Slater determinant in the following form:
W) = Af AT .. Af10). (3.27)

The operators A;" create a particle on the Hartree-Fock orbital i, and can be written in

terms of the single-particle creation operators as
A=Y aPct. (3.28)
jo

The complex coefficients a') are variational parameters of the procedure. They are cho-

Jo

sen so as to minimise the expectation value (¥|H|¥) of the Hamiltonian 3.2 under two
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constraints: (i) that the state |¥) be normalised, and (ii) that the operators A;, A satisfy
the Fermionic anticommutation rules.

In general, the Hartree-Fock operators defined in Eq. (3.28) can involve the single-
particle creation operators of all orbitals j and both spin orientations. This approach
is called the spin- and space-unrestricted Hartree-Fock method [17, 133, 134]. However,
since the Hamiltonian (3.2) conserves both total angular momentum and projection of the
total spin, in my calculations I use the spin- and space-restricted Hartree-Fock approach,
in which the creation operators A" are written using the single-particle creation operators
¢t with the same angular momentum and spin. For the parabolic potential the single-

particle angular momentum [ = n — m, and, for [ <0,
Az?ll_a = ag,(i)l,ac(tfl,cf + aI,((Z)flql—l),act(fl—H),a + a;,(z)fH—Q),ac;—,(fl—FQ),a +.. (329)

For positive angular momenta the Hartree-Fock creation operators take a similar form:

Ay, = aZE)Z,)UC?,—O,U + a:l(—ll—)l),l,aca—i—l),l,a + azl(—li—)Q),Q,aca—i-Q),Z,a +.. (3.30)

Thus, the Hartree-Fock orbitals can renormalise only within a defined angular momentum
and spin channel.

The coeflicients a,,  are determined by minimising the expectation value (U|H |¥) of
the many-body Hamiltonian. In the case of the spin- and space-restricted Hartree-Fock
approach formulated in the language of creation operators, the minimisation procedure
can be reduced to an eigenvalue problem of the Hartree-Fock Hamiltonian for each angular
momentum-spin channel separately. I shall describe this procedure in detail in Chapter 5,

where I use the Hartree-Fock approximation to analyse the properties of a N-electron

parabolic quantum dot in an external magnetic field.
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3.3 The exact diagonalisation approach

In the previous Section I have presented the Hartree-Fock method, capturing the direct
and exchange Coulomb effects in its treatment of many confined interacting particles. I
shall now move on to presenting a method that accounts for all aspects of Coulomb in-
teractions, including electronic correlations, in an eract manner with controlled accuracy.
This is the exact diagonalisation approach, formulated in the configuration-interaction
framework.

In the configuration interaction (CI) method the Hamiltonian (3.2) is written in the
matrix form in the basis of many-electron configurations. Unlike the correlated bases of
Jastrow or Hylleraas functions, the configurations making up the basis do not include
correlations among pairs of interacting particles, and so their repulsive interaction is not
minimised. As a result, the choice and size of the CI basis affects the accuracy of the
results, and, to obtain well-converged eigenenergies and eigenstates, it is usually necessary
to consider very large basis sets.

In this Section I shall focus on the CI method applied to the system of N electrons
confined in a parabolic quantum dot. My description starts with the choice of the many-
particle basis. I shall consider two such bases, one built by distributing electrons on single-
particle orbitals, and the second obtained by distributing quasiparticles on the Hartree-
Fock orbitals. Then I shall move on to writing the Hamiltonian matrix in the chosen
basis. I will show how the geometrical and dynamical symmetries of the single particle
states, as well as the many-particle symmetries of the Hamiltonian can be exploited in
order to divide the basis set into smaller, uncoupled subsets. This will allow for a reduced
basis size and improved accuracy, which in turn allows for more reliable computations of
many-body properties of my system in the regime of strong correlations. But, even using
these reduced and optimised basis sets, the size of Hamiltonians that I need to consider
is still very large (even of order of 10° x 10°). Such matrices cannot be directly stored

in the memory of the present-day computers, and special methods have to be developed
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to diagonalise them. One such method - the conjugate gradient approach coupled with

spectrum folding - will be presented in detail.

3.3.1 Notation and choice of basis

Configurations built out of single-particle orbitals

For clarity of the discussion let us start with rewriting the Hamiltonian of the system of

N interacting electrons:

10 jo

N 1
H =Y E(i,0)c}ci, + 3 > (io, jo'|Vkd', loyc el icrorcio. (3.31)

io ijkloo’
Because I shall now concentrate on the case of parabolic lateral confinement, the composite
index i denotes the single-particle Fock-Darwin orbital quantum numbers (n, m).
I construct the basis of my many-particle Hilbert space out of electronic configurations
by distributing my N electrons on the single-particle Fock-Darwin states in all possible
ways, however obeying the Pauli exclusion principle. In the language of creation operators

compatible with the Hamiltonian (3.31), such configurations will take the form:

o Co co.of |0). (3.32)

\nlmlol, NoMeo09, . . ., nNmNaN> = cn1m101 NaMa o) -Chymyon

Such configurations are orthonormal, because the single-particle Fock-Darwin orbitals are
orthonormal. The only question concerns the size of this basis.

As I have shown in Section 2.1, the single-particle Fock-Darwin spectrum consists of
an infinite number of levels. To be able to perform computations, I thus need to restrict
the basis size, similarly as I did in Section 2.2.2: Out of the infinite number of the Fock-
Darwin states I only choose a finite number M of those with the lowest energies. In the
simple case of the single electron confined in a disk in a magnetic field T only needed
a small number of such states (in my model 20), but I clearly stated that such a fast
convergence was due to the strong zero-field quantisation brought about by the small

size of the disk. Here I deal with the parabolic potential, much softer compared to that
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of the disk, and I need to compare the quantisation of the single-particle energy to the
characteristic energies of the Coulomb interactions. As I shall show in the next Chapter,
these two energy scales are comparable, which makes it necessary to consider more single-
particle levels in order to obtain a well-converged result. I shall treat the number M as a
parameter controlling my approximation - the only approximation in the method.

Let us now find the size of the many-particle basis. I have N electrons, of which N;
with spin up and N with spin down, and I have to distribute them on M single-particle
orbitals. Since all M single-particle states are degenerate with respect to the electron

spin, the full basis size is obtained as a product

basis size = (1 | (M (3.33)
asis size = N\, .

in which I simply consider distributing the spin up electrons and the spin down electrons
on M levels independently (one electron of each species can occupy the same Fock-Darwin

orbital).

Configurations built out of the Hartree-Fock orbitals

The configurations constructed in the previous paragraph are Slater determinants built
out of single-particle orbitals, and thus they do not include correlations between pairs of
particles. Thus the particle-particle Coulomb repulsion is not minimised, which results
in large diagonal and offdiagonal Hamiltonian matrix elements. This in turn entails the
necessity of using very large basis sets in order to obtain accurate results.

Here I shall describe a different method of constructing the many-particle basis set:
instead of distributing the electrons on the single-particle orbitals, I shall distribute the
quasielectrons on the Hartree-Fock orbitals.

In Section 3.2, I have described the Hartree-Fock approximation in the language of

effective creation and annihilation operators. In the space- and spin-restricted version of
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the method these operators are written as

+ (1) A+ *(1) + *(1) +

Alla - a’n,m,acn,m,a + a’n+1,m+1,dcn+1,m+1,a + a’n+2,m+2,acn+2,m+2,a T+ (334)
+ (2 o+ *(2) + *(2) +

A2la - a’n,m,acn,m,a + a’n+1,m+1,dcn+1,m+1,a + a’n+2,m+2,acn+2,m+2,a T+ (335)
+  _ x(3) .+ *(3) + *(3) +

A3la - a’n,m,acn,m,o + a’n+1,m+1,ocn+1,m+1,a + a’n+2,m+2,acn—|—2,m+2,o +... (336)

with the angular momentum [ = n — m, and coefficients a established in the Hartree-
Fock minimisation. For each angular momentum and spin channel there is one-to-one
correspondence between the effective creation operators A' (and the effective annihila-
tion operators A) and the Fock-Darwin creation and annihilation operators ¢t and ¢,
respectively. The transformation between one set of operators and the other can be seen
simply as a rotation, and let us denote the rotation matrix as Uy: Aj, = ¥, Uie (4, )¢,
This matrix may, in general, be different for each angular momentum and spin channel.
Moreover, the operators A™ and A can be constructed not only for occupied, but also for
unoccupied orbitals. This operation is outside of the Hartree-Fock procedure itself; the
corresponding sets of coefficients a are the eigenvectors obtained in the diagonalisation of
the Hartree-Fock matrices for all angular momentum and spin channels (including those
that do not contain electrons).

By performing the rotation U, I create a new, effective single-quasiparticle basis set,
whose orbitals account for the direct and exchange interactions in the system. It is
therefore advantageous to build my many-particle configurations in the new basis.

The construction of the many-particle basis set proceeds as follows. First I perform the
Hartree-Fock procedure to find the Hartree-Fock ground state |¥), thereby establishing
the rotation matrices U,,. Then I write my many-body Hamiltonian in the language of

the effective creation and annihilation operators:

A~

H = Y thorio A Ario (3.37)

k' o

k,
1
' ' + A
+ o5 2 2 D Akloy kalao'|Vikslso!, kalso) ALy, o Al Akstior Akatac
kik2k3zka l112l3l4 00’
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Note that in the basis of the effective Hartree-Fock orbitals the energy term ¢ is not
diagonal, but couples different orbitals within the same angular momentum and spin

channel. The Coulomb matrix elements in the new basis are obtained by a rotation:

<k1l1, leQ‘V|k3l3, k4l4> = Z Z Z Z <’I’le1, n2m2|V\n3m3, n4m4> (338)

Nn1MmMm1 N2M2 N3M3 N4Mm4q
x Uy (ki, (nama))Us, (Ko, (n2ma)) Uy (ks, (nama)) Uyl (ka, (nama)).
The summation over the Fock-Darwin indices (nm) is done under constraints ny —my = [y,
No — mg = ly, ng — m3 = I3 and ny — my = l4. At this point both the effective single-
particle basis and the rotated Hamiltonian are known. I can proceed to distributing my

quasiparticles on the Hartree-Fock orbitals and creating the configurations of the type

\klllal, k2l20'2, ceey kNlNUN> = Al—;l1(71A+ A+ ‘0> (339)

kolooo * ° * kNlNG'N

From this moment on, creation of the many-particle basis and diagonalisation of the
Hamiltonian is carried out exactly in the same way as it is done for the case of non-
renormalised single-particle orbitals.

An alternative way of constructing the manyparticle basis set is to start with the
Hartree-Fock ground state |¥) and construct the basis vectors as quasielectron-quasihole
pair excitations from this state. For example, the single-pair excitations are created as
configurations of the type

A;:lllo'AkZZZUI |\Ij>’

and can be constructed either with (o # ¢') or without (¢ = ¢’) flipping the spin of the
quasiparticle. Such excitations are thus obtained from the Hartree-Fock ground state by
taking one quasiparticle (electron dressed in interactions) from below the Fermi energy,
which creates a hole in the interior of the electronic droplet. The quasielectron is then
put on one of the unoccupied Hartree-Fock orbitals above the Fermi energy. In this
way I can create two- and multiple-pair excitations. Note that this approach allows to
isolate the lower-lying excitations (two- and three-pair) from higher-lying ones (multiple-

pair). In the exact-diagonalisation procedure the largest corrections to the energy of the
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system are introduced by those basis states that are closest in energy to the ground state,
as I have demonstrated in Section 2.2.2 on the example of the single-particle spectrum.
Therefore it is advantageous to build my basis set from the vectors describing the few-pair
excitations, as being more relevant for the accuracy of the result, and neglect the higher-
pair excitations. I shall demonstrate the details of this procedure in Chapter 5, where I
shall use the Hartree-Fock and exact diagonalisation methods to analyse the properties
of the system of interacting electrons confined in a parabolic QD in an external magnetic

field.

3.3.2 Exact diagonalisation method optimised for parabolic lat-

eral confinements

From the formula (3.33) it is clear that this size grows factorially both with the number
of single-particle states M and the number of electrons N. For instance, if I take six
electrons, with Ny = 3 and N| = 3, and distribute them in all possible ways on M = 20
orbitals, the total basis size is 1299600. This means that without further refinement I am
unable to obtain any meaningful results with this method.

The optimisation of the basis set involves exploiting the symmetries of the system.
I have demonstrated this idea at work already in Section 2.2.2, where I isolated subsets
of the basis with definite angular momentum and definite vertical quantum number, and
demonstrated that the Hamiltonian does not couple them. Because of that I could resolve
the angular momentum-subband channels, and I performed the diagonalisation study in
each such channel.

In the case of the many-particle system in the parabolic confinement I also have several
symmetries, leading to a block-diagonal form of the Hamiltonian in the full configuration
basis. The total Hamiltonian (3.31) in the basis of configurations built out of harmonic-

oscillator single-particle basis conserves the total angular momentum L, total spin S, and
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total spin projection S, of the system, and therefore I may classify the many-particle
configurations into groups labelled by these three quantum numbers. The same is true
for the Hamiltonian (3.38) in the basis of configurations built out of the effective Hartree-
Fock orbitals calculated in the spin- and space-restricted approach. However, out of these
two Hamiltonians only the first one exhibits an additional symmetry, stemming from the
parabolic form of the confinement: it couples only the states with the same type of the
centre-of-mass motion. This additional, fourth good quantum number allows to optimise
the harmonic-oscillator many-particle basis set better than the one based on Hartree-Fock
orbitals, and therefore in the rest of this Section I will focus on the former.

A detailed discussion of the optimisation steps applied to the many-particle basis set
on the specific example of an N -electron parabolic quantum dot in a magnetic field
is presented in the article “Configuration interaction method for Fock-Darwin states”,
written by Andreas Wensauer, Marek Korkusinski, and Pawel Hawrylak, and published
in Solid State Communications, vol. 130, page 115 (2004). This publication is an integral
part of this thesis and is appended to the presented material. Here I will highlight its

most important points.

Angular momentum

Let us start with the conservation of total angular momentum. The total angular mo-

mentum operator is defined as

L=> (n—m)et,.Ccnmo- (3.40)

Since the parabolic confinement is circularly symmetric, each single-particle orbital has
a definite angular momentum, and therefore the operator L commutes with the single-
particle energy term (consisting of the kinetic energy operator and the external con-
finement potential) of the Hamiltonian (3.31). Moreover, as I have demonstrated in Sec-

tion 3.1.2, the Coulomb interactions conserve the total angular momentum of the scattered
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pair of particles. Thus the operator L commutes also with the interaction term in this
Hamiltonian. This allows me to group my basis configurations into subspaces according

to the total angular momentum.

Projection of the total spin

The second symmetry is the projection of the total spin S,, whose corresponding operator

is defined as:

S, = Z act Come- (3.41)

nmao

In the Hamiltonian (3.31) there is only one term that couples to the spin of each electron:
the single-particle Zeeman term in the single-particle energy operator. The Zeeman term,
however, does not lead to spin flips, but lowers or increases the energy of a single-particle
orbital depending on the magnetic field and the direction of the electronic spin. This
means that the operator S, commutes with the total Hamiltonian, and all the configu-
rations from each angular momentum subspace can be further grouped according to the

value of their total spin projection S,.

Total spin

Accounting for the conservation of the total spin S of the system is more complicated. The
total spin is a vector quantity, and to simplify my description I will focus on its square:
the operator 52, This operator, written in the language of creation and annihilation

operators for N confined electrons, takes the form

A N A
52 - 5 + Sz2 — Z C;—TC;-EC]'\LCZ'T. (342)
tJ

The two first terms of the operator S2 are diagonal, and give the same values for all the N-
electron configurations from the same angular-momentum and S,-resolved basis set. The

third term, however, couples many-particle configurations in such a way that it annihilates

the particle on the orbital 7 and recreates it on the same orbital with the flipped spin;
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the same is true for particle j. Note that for the two configurations to be coupled by SQ,
they have to exhibit the same pattern of orbital quantum numbers, and only differ in the
way the spin-up and spin-down electrons are distributed on these orbitals. For example,
the operator S? couples the configuration |a) = cdy.cfy, [0) to [b) = cfi,cdy,[0), but none
of these configurations is coupled to |c¢) = cfyy¢43,]0). Therefore it is possible to arrange
the many-particle configurations into blocks with the same orbital pattern. I can then
construct the matrix S2 in the basis of each of these blocks and diagonalise it numerically
to obtain the eigenstates of the total spin operator. For example, in the basis of my two

configurations {|a),|b)} the matrix of the operator 52 takes the form
S? = : (3.43)

and, upon the diagonalisation of this simple matrix one obtains the eigenstate |S) =
% (la) + |b)) with the eigenvalue S? = 0, and the eigenstate |T) = % (la) — |b)) with
the eigenvalue S? = 2. The first eigenstate is the spin singlet, and the second - the spin
triplet. To enumerate these states, usually the eigenvalue of the total spin is used instead

of the eigenvalue of 52; these two eigenvalues are connected via the relationship
(8%) = 5(S +1). (3.44)

This means that the eigenvalue corresponding to the state |S) is S = 0, and the one
corresponding to the state |T") is S = 1. The rotation to the basis of total spin eigen-
vectors becomes increasingly more complicated as the number of particles increases. The
spin blocks are, however, fairly small, and are composed, e.g., of up to several hundred
configurations for the system with N = 6 electrons. From this simple analysis it is clear
that the many-particle basis with resolved total angular momentum, total spin, and total
projection of the total spin will no longer consist of many-particle configurations, but will
be composed of their linear combinations.

To illustrate how resolving the total spin as a good quantum number decreases the

size of the many-particle basis, let us consider the system of N = 6 electrons, out of



CHAPTER 3. METHODS OF ANALYSIS... 93

which N4 = 3 are spin up and N| = 3, distributed on the M = 121 single-particle orbitals
(n,m), for which 0 < n < 10 and 0 < m < 10. According to the formula (3.33), by
distributing these electrons on these single-particle orbitals more than 8.29 x 10'° many-
particle configurations can be generated. Out of those configurations there are 326120
configurations with total angular momentum L = 0. Further, if I resolve the total spin as a
good quantum number, I obtain 92410 configurations with S = 0, 152460 configurations
with S = 1, 70711 configurations with S = 2, and 10593 configurations with S = 3.
Therefore, by resolving the two quantum numbers L and S I have reduced the size of the

problem of six electrons with total spin projection S, = 0 by five orders of magnitude.

Centre of mass

Let us now move on to describing the last symmetry, involving the centre-of-mass (CM)
motion of the system. The parabolic confinement allows for a separation of the CM and
relative motion of NV interacting confined electrons, and so the real-space Hamiltonian of

the system can be written as [51, 62]:
H= I:ICM(R; P) + ﬁrel(@l, s ON=1,T1, o, TN_1). (3.45)

Here, NR = YN  r;and P = ¥, p; are the CM coordinate and momentum, respectively,
and p;, m; are, respectively, the position and momentum of the i-th relative particle, which
can be written using Jacobi coordinates [62]. In the following I shall focus on the CM

Hamiltonian, which, when written in the real-space representation, takes the form:

Hen =

1 1 1
P2+ -Nm* 242 P|,. .
SN + 5 Vm wpR” + o R x PJ, (3.46)

The notation used in this formula follows that introduced in the Section 2.1. I can
now express the CM position and momentum by the single-particle raising and lowering

operators a*, b*, a, and b, and write the CM Hamiltonian in the second quantisation as:

i 1 1
Hens = oy (A¢A+ + 5) + (A+A_ + 5) , (3.47)
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where the operators AT, A;, A*, and A_ are bosonic operators describing collective CM

excitations of the system:

AT = \/_ > Vn+ 1c(n+1 o Cnma’ (3.48)

AT = \/_ Z\/ + 1¢ (m-+1)0 Crmo (3.49)

A, = Z VI 1) Crme (3.50)

’Ilmﬂ'

A = vme! o Came- 3.51
7 & Vi (851)

These operators can be interpreted respectively as creation and annihilation operators for
collective excitations of the system. The operator AT (A, ) increases (decreases) the total
energy of the system by fiw,, while the operator AT (A_) increases (decreases) the total
energy of the system by Aiw_. Note that these operators do not couple to the interaction
term in the many-particle Hamiltonian. The CM operators can be now constructed using
the four operators defined above as:

R 1 /
C_|_ = AiA_}_ = N Z n(nl + 1)6?;;’—1—1)711’0’c”'m'U'cEtz—l)mocnmUﬂ (352)

n'm’d’'nmo

R 1 /
C. = AtA = N Z m(m/ + 1)0;;(7]'),’-'_1)0-’Cn'm’O”C;L'—(m—l)g'can" (353)

n'm!/o'nmao
These two operators commute with the total Hamiltonian.

Let us focus, for example, on the operator C_. Note that this operator affects only the
pattern of orbital quantum numbers m, leaving the number n of each electron unchanged.
Therefore, similarly to the case of the total spin, I can arrange the configurations into
blocks. The configurations belonging to each block have the same pattern of quantum
numbers no, but differ in the patterns of the numbers m. To resolve the CM quantum
numbers I build the matrix corresponding to the operator C_ in each block and diagonalise
it numerically. As a result I obtain the eigenvectors of the total centre-of-mass operator,
together with the corresponding CM quantum numbers. For further processing it is
sufficient to collect only those CM eigenstates with CM eigenvalues equal to zero; all

other eigenstates can be generated simply by application of the CM raising operator A*.
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In the paper we apply the basis reduction rules discussed in this Section to a model
case of N = 4 — 7 interacting electrons confined by a parabolic potential in the absence of
the magnetic field, and N = 4 electrons in the magnetic field. We show that the obtained
results compare well with those obtained using the quantum Monte Carlo and stochastic-
variational methods. We also point out that use of the optimised configuration-interaction
approach allows to calculate reliably not only the ground state, but also the excited states

of the system, an ability which the two other methods lack.

3.3.3 Creation of the Hamiltonian matrix

I have demonstrated how I create the basis of configurations and how I can optimise it
to account for the symmetries of the system. Let us now move on to describing how the
Hamiltonian is written in the matrix form in this basis.

I will describe the creation of the Hamiltonian matrix on a simple example of the
system of N = 3 electrons, two with spin down and one with spin up. I shall restrict
the number of the single-particle Fock-Darwin states available for my electrons to three:
(n,m) = (0,0), (n,m) = (0,1), and (n,m) = (1,0). According to Eq. (3.33), in this case
I can generate nine electronic configurations with different angular momenta. To optimise
this basis I focus on the states with total angular momentum L = —1 only. This reduces

my set to two configurations:

) = ¢g0,4€01,,C00,410); (3.54)

|b> = 0&17¢CI05¢6&15T|0>' (355)

Note that in writing these two configurations I am using a convention, to which I shall
adhere throughout this work: from left to right I write the creation operators first for
spin-down, and then for spin-up electrons, and for each spin species I arrange the orbitals
according to their energy in ascending order.

The configuration |a) is composed of two electrons with antiparallel spins occupying
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the orbital (0,0) and one spin-down electron on the orbital (0,1). The configuration |b),
on the other hand, consists of two electrons with antiparallel spins on the orbital (0,1) and
one spin-down electron on the orbital (1,0). Both configurations have total spin S = 1/2,
so my basis set {|a), |b)} is already composed of total spin eigenstates.

In my simple basis the Hamiltonian can be written as a 2 X 2 matrix in the following

form:
. a/Hl|a) (a|H|b
H:<||><||)' (3.56)
(b|H|a) (b|H]b)
My task is to calculate the matrix elements (a|H|a), (a|H|b) = (b|H|a)*, and (b|H |b)
using the form of the Hamiltonian as in Eq. (3.31). To simplify the description, I shall

write the total Hamiltonian as a sum of two operators:

A

H=T+ H, (3.57)

where T is the single-particle energy operator, describing the motion of each particle in
the external confinement of the nanostructure, and H¢ is the Coulomb operator. I shall

calculate the matrix elements of each of these two operators separately.

Single-particle energy operator

The single-particle energy operator written using the Fock-Darwin creation and annihila-

tion operators takes the form:

A

T =Y E(n,m,o)c; ,Cumo- (3.58)

nmao
Let us calculate in detail the matrix element T,, = (a|T|a).
Toa = Y E(n,m,0)(0]co,0,+¢0,1,1€0,0,4 |Chmo Crme €50, 1 €11 C10.410) - (3.59)
nmao
This matrix element has a form of a sum over the single-particle indices nmo. Note that
the operator ¢ Cume = Nume 1S @ number operator, returning the number of electrons

on the orbital nmo. Therefore the only nonzero terms in this sum will be those with the
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indices nmo corresponding to the indices of one of the creation operators in the state |a);

other orbitals contain zero electrons. Therefore, in this case

Taa = E(0,0,1)(0lco0,1¢0,1,1¢0,0,4|70,0.1/¢50,¢01,1€50+0)
+ E(0,1,1){0[co,0,+¢0,1,1€0,0,170,1,41€50,,01.,C0.0.410)

+ E(O, 0, T) (O|co,0,¢co,1,¢co,0,¢|n0,0,¢\c&o’icail’icaio,HO). (360)

Since in each case the orbitals defined by the indices of the number operator contain one

electron, all expectation values of 7 will be equal to 1, and the matrix element
Twa = E(0,0,1) + E(0,1,]) + E(0,0,7). (3.61)

Thus, the matrix element 7, is equal to the sum of the single-particle energies of orbitals

occupied by each electron. Similarly one can show that

The off-diagonal matrix elements (a|T'|b) = (b|T|a) involve expectation values of the
type (a|npme|b). Since the number operator 7 cannot redistribute electrons, these ex-
pectation values will be zero. Thus, the single-particle energy operator in my basis is a

diagonal matrix:

~ Taa 0
T = . (3.63)
0 Ty

Note that if the configurations are built out of the Hartree-Fock orbitals instead of the
Fock-Darwin ones, this operator can contain nonzero off-diagonal elements, as can be seen

from the form of the operator 7" in Eq. (3.38).

Coulomb operator

Let us now focus on the Coulomb operator

~ 1 .
Hq = 5 Z (zg|v|kl>c;’c;’ckcl, (3.64)
ijkl
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where the composite index ¢ = nmo; the same applies to j, k, and [. In what follows I
shall make use of the fact that my single-particle basis set is ordered according to the spin
and single-particle energy, so, for instance, the notation £ > [ will mean that the orbital
k is higher up in the single-particle basis than the orbital /.

In the Coulomb operator (3.64) the composite indices run over all available single-
particle orbitals. In particular, I need to consider terms with k£ < [ and k& > [ (the term
with £ = [ is identically zero, since in this case the two annihilation operators would act
on the same orbital).

I shall now demonstrate that I can reduce the number of terms in the sum in Eq. (3.64)
using the Fermionic commutation rules for the operators ¢ and ¢™ written in Eq. (3.4).

Let us focus on the indices k£ and [ first. I can separate the sum into two terms: one
for £ < [, and one for k£ > [:

-1
Ho = ( Y (ijlvlklyel cfever + (z’j\u|k1)c;cj+ckcl) _ (3.65)

i,5.k<l i,3.k>1

In the second term I interchange the two annihilation operators, observing the Fermionic
commutation rules: cxc; = —c¢ci. 1 also rename the dummy indices: £ — [ and [ — k.

This allows me to write the Coulomb operator in the form:

Ao=3 3 (Glolkt) — (i]0]tk)) ¢} e} exer. (3.66)
iy k<l

The first term in this sum is the Coulomb direct element. This matrix element attains a
nonzero value only if the spin of the orbital |i) is the same as that of the orbital |/} and
the spin of the orbital |j) is the same as that of the orbital |k), however, the spin of |7)
can be different than that of |j). The second term in the sum is the Coulomb exchange
element. This matrix element attains a nonzero value only if the scattered particles have

the same spin.
I can perform a similar simplification for orbitals ¢ and j. As a result, I will obtain

another pair of matrix elements, one direct and one exchange, identical to the elements

in Eq. (3.66). Upon their summation the factor 1/2 in front of the sum is eliminated, and
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the final form of the Coulomb operator is
He= Y ((ijlv|kl) — (ij|v|lk)) cf cf erar. (3.67)
i>j,k<l

Let us now calculate the matrix elements of the Coulomb operator He in my ba-
sis {|a), [b)} of the three-electron configurations, starting with the diagonal element

(a|Hcla) = Hee.
Hg =Y ((iglvlkl) — (ijlv|lk)) (0lco0c0,1,1c00,l6 ¢ ereiledo ¢ cio40). (3.68)

i>j,k<l
Note that the element (0|co,0,1¢0,1,4C0,0,4]¢ €] Cri|€go, 01,1 C004]0) can be understood as

the dot product of two vectors:

0), (3.69)

[P R + o4+
¢jCiCo0,,C01,,C0,0,+0) and CkC1C0,0,1C0,1,,C0,0,1

with ¢ > 7 and k£ < [. It is now clear why I chose these boundaries in summation in
Eq. (3.67): in each case, out of the two annihilation operators, the first one (i.e., ¢; and ¢,
respectively) removes an electron created deeper (farther to the right) in the sequence of
operators ¢ as compared to the second annihilation operator (i.e., ¢; and ¢, respectively).
This simplifies the automatic computation of the matrix elements, since I do not have to
check whether a given electron in the configuration has already been removed or not.
Let us now enumerate the possible sets of orbitals 4, j and k, [, for which the vectors
in Eq. (3.69) are nonzero. As for the pair i, j, there are three possibilities. One of them

isi=1(0,1,1), 5 = (0,0,]), which gives

+ o+t o+
CO,O,LCO,1,¢Co,o,¢co,1,¢co,o,¢|0>— Co,o,HO)-

The minus sign in the above expression is a phase factor, originating from the fact that
in order to act with the operator ¢y, I need to reverse the order of this operator and
the first creation operator in the sequence. This introduces the minus sign due to the

Fermionic commutation rules of these operators.
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The second possible pair of orbitals 4, j is ¢ = (0,0,71), 7 = (0,0,J); upon their
application I am left with the vector +car, 1,110). Here the phase factor is positive because
in order to act with ¢y 4, I need to reverse the order of operators twice.

Finally, the third possible pair of orbitals is s = (0,0, 1), 7 = (0, 1,J). Their application
gives —cg o |0), the negative phase being due to the three reversals of operators necessary
to complete it.

Since the second vector in Eq. (3.69) is exactly the same as the first one, the possible
pairs of orbitals k, [ are identical to the pairs ¢, j described above. This gives 3 x 3 =9
possible terms in the sum (3.68). The number of terms is further decreased by considering
the dot products of the vectors from Eq. (3.69) for each combination of orbitals. These
dot products will be nonzero only if the third electron (i.e., the electron that remains
after the application of annihilation operators) is the same on either side. In the case
of diagonal matrix elements of the Coulomb operator, and in particular for the element
Hg*, this happens only if the orbitals ¢ = [ and j = k. Thus the number of nonzero dot

products is reduced to three, and the matrix element

H = ((01,00v]00,01) — (01,00[v|01, 00))

+ {00, 00[v|00, 00) + (00, 01|v01, 00). (3.70)

The term in braces corresponds to the orbitals i = [ = (0,1,]), j = k£ = (0,0,]) and
consists of the direct and exchange elements because the scattered electrons have the
same spins. The two remaining terms in H%* correspond to the two other sets of orbitals
and consist of direct elements only.

In an analogous fashion one can show that the second diagonal matrix element of the

Coulomb operator is

HY = ({10,01|v|01,10) — (10,01|v|10,01))

+ (01,01[v]01,01) + (01,10[v|10,01). (3.71)
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The off-diagonal matrix element I:Igb, on the other hand, consists of only one term:
HE = —(00,00[v[10,01). (3.72)

This term corresponds to the following choice of orbitals: ¢ = (0,0,1), 7 = (0,0,),
k = (1,0,)), L = (0,1,1). It has a negative phase, because the application of operators
c;c; requires two interchanges of operators, and application of the pair ¢ic; requires three

such interchanges. Thus the phase is (—1)?*3 = (-1).

The full Hamiltonian

I am now ready to write my full Hamiltonian matrix in the basis {|a), |b)}:

. Taa + Hoa Hab
(H&) Tw+HY
If T calculate the elements of the single-particle energy operator using the Fock-Darwin

energies, and the elements of the Coulomb operator using the matrix elements (ij|v|kl)

in the harmonic-oscillator basis, the resulting Hamiltonian matrix takes the form:

. 3hw., + 3hw_ + 2.25E, —0.25E
o | 2T ° " , (3.74)

—0.25E, 2hwy + hw_ + 1.875E,

where Ey = y/m/f. The eigenvalues of this simple matrix can be obtained analytically,

and are

v/ (hw, + hw_0.375E)? + 0.25 3

Ey = 2hw, + 3hw_ + 2.0625E, + 5 : (3.75)
v/ (hw, + hw_0.375E)2 + 0.25 3
Ey = 2hw, + 3hw_ + 2.0625E, — . . (3.76)

In this model calculation I assumed a very simple, two-element basis set. Later on I
shall use much larger basis sets of configurations, however in all such cases the rules of
constructing the Hamiltonian matrix remain the same.

The last step of the exact diagonalisation approach involves numerical diagonalisation

of the Hamiltonian matrix. To this end I could use the numerical procedures appropriate
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for full matrices, requiring that the entire matrix be stored in the memory of the com-
puter. This, however, would be limiting, since the matrix of order of about 11000 x 11000
with elements encoded using 8-byte numbers (standard double-precision format) occupies
about 1 gigabyte of memory; I would be thus restricted to the sizes of the basis set no
larger than a few tens of thousands. I am, however, interested in much larger bases, com-
posed of millions of configurations. Processing of such large Hamiltonian matrices can be
accomplished only by exploiting the fact that they are sparse.

A matrix is sparse if the majority of its off-diagonal matrix elements is equal to zero.
In my Hamiltonian the off-diagonal elements can only be due to the Coulomb operator.
This operator has two important properties: each term in the sum (3.67) has to conserve
the angular momentum of the scattered pair of electrons, and the dot product of the
two vectors obtained after the application of operators c;c; and cic; has to be nonzero.
These properties impose stringent conditions on the pairs of vectors that can be coupled
by Hc, and lead to vanishing of typically about 80% of off-diagonal elements. Thus my
Hamiltonian matrix is typically sparse, and I can save the computer memory by storing
only its nonzero elements. This, however, prevents me from using the most popular linear
algebra packages, such as LAPACK [71], since they are not compatible with such a packed
matrix storage. Therefore I need to develop a numerical diagonalisation algorithm which
is designed specifically to handle sparse matrices. I describe two such algorithms in the

next Section.

3.3.4 Diagonalisation of large and sparse matrices

In the previous Section I have shown how I can decrease the size of the many-particle
basis of configurations of N electrons distributed on M single-particle levels by accounting
for the symmetries of the system. But the accuracy of the results of the configuration-
interaction method is still affected by the choice of the cutoff M chosen to limit the

number of single-particle orbitals: in order to obtain reliable results, the number M
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should be as large as possible. Therefore, by exploiting the symmetries of the system I
have not eliminated the problem of large matrices; I just replaced them by ones, whose
diagonalisation will yield results which are much more accurate than those obtained using
the unoptimised basis set of the same size. These matrices still have sizes at least of
105 x 10°, and special techniques must be used to diagonalise them. In my research I
employ the iterative conjugate gradient method combined with spectrum folding. I shall
describe these techniques in this Section.

In discussing the conjugate gradient method of matrix diagonalisation I shall first
focus on a simpler technique - the steepest descent method - in which the entire principle
of iterative minimisation is not obscured by optimisation details. I will assume that the
Hamiltonian matrix H is real and symmetric, which guarantees real eigenvalues. This
applies directly to the many-body problem, since the many-body Hamiltonian matrix is
real in the basis of configurations. The method can, however, be easily generalised to
treat complex Hermitian matrices as well.

Both the steepest descent and the conjugate gradient methods are of iterative nature,
and their general premise is to “generate” a guess vector and then “purify” it according
to some algorithm. This purification process aims at obtaining the exact eigenvector
corresponding to the lowest eigenvalue of H. The process is executed with the constraint
that the vector being processed be normalised to 1.

The steepest descent and conjugate gradient methods presented here are special cases
of the general steepest descent and conjugate gradient methods, which deal with finding
a minimum of a multivariable function. The only thing that makes them special is the
normalisation constraint mentioned before. The general methods are constructed with
the assumption that the user supplies the multidimensional function f(z,zs,...,2y) to
be minimised. The first step is to generate a random starting point (the “guess vector”)
iy = [x§°),x§°), cen x§3)], whose coordinates are chosen using a random number generator.

This point, in general, is away from the minimum of the function f. Now I calculate the
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gradient of the function f at the point j:

. lor o of
Vi (@)la=a, = 0x, O0xs’ 83;N]

(3.77)

i=ilp

This vector shows the direction of the steepest increase of the function, and the vector
—V f(@)|z=a, shows the direction of the steepest descent. I can then take a step of some
length from the point iy along the direction of the steepest descent, and this hopefully
will shift me closer to the global (or local) minimum of the function f. At the new point,
i1, I do the same, i.e., calculate the direction of the steepest descent and take the next
step. I expect that after a sufficiently large number of steps I will descend to the actual
minimum of f. This is the method of the steepest descent.

Sophisticated methods have been developed to calculate the desirable length of the
step mentioned above. Also, sometimes steps are taken not along the direction of the
steepest descent, but along a set of “conjugate” directions. The idea of “conjugacy”
involves creating the next direction of the step based not only on the gradient, but also
on previous step directions. In this way one never steps along the same direction twice.

To better visualise these techniques, let us consider a simple two-dimensional problem
of a long and deep potential valley. My goal is to find the lowest point (minimum) in this
valley, but for now without any normalisation constraints. If I choose a random starting
point, say, on one of the walls of the valley, and then take a step along the direction of
steepest descent, I may end up somewhere on the opposite wall of this valley. If the shape
of the potential valley is strongly asymmetric (the valley is very long and narrow), in
the next iteration I may return close to the starting point (the subsequent directions of
steepest descent will be nearly parallel). I will, most likely, ultimately find a minimum,
but this convergence can take place after a large number of steps. I can limit the number
of steps taken in the steepest descent procedure by imposing additional requirements on
subsequent directions in which I step - make them conjugate. In such procedure, the
first step is always taken along the direction of steepest descent. However, if my function

f depends only on two variables, it is possible to construct a conjugate direction that
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already in the second step of the iteration will take me directly to the minimum of the
function if the function is a quadratic polynomial, or very close to the minimum, if the
function is more complicated. For a detailed description of the general steepest descent
and conjugate gradient methods I refer the reader to Ref. [109].

Now I set out to adopt the technique described above to find the lowest eigenvalue
of the matrix H. To this end I define my function f as the expectation value of the
Hamiltonian in the state |u):

fi@) = (ulHlu), (3.78)

where |u) = @ = [x1,Z9,...,2n]. This vector is understood as a shorthand notation of
a many-particle state of the system. This state is a linear combination of many-particle
configurations, from which I constructed my basis set. To make the notation compact, I
simply retain the coefficients that correspond to each configuration in this combination.
Here T also assumed that the size of the basis, and the dimension of the Hamiltonian H,
is N (in this Section, this symbol does not denote the number of electrons).

Therefore, I have a function of N variables, defined as an expectation value of the
Hamiltonian H, but with the normalisation constraint: (u|u) = z?+z2+...+x% = 1. The
above function is a long sum of terms such as u;u;Hy, so if it was not for the constraint,
it would be a quadratic function in the variables (a quadratic form). The additional
constraint complicates the picture, since one of the variables becomes dependent on all
other variables, and can be eliminated from the function f. However, in this approach
I shall not carry out this elimination explicitly. I will only be interested in finding the
set of variables z1,, 2, ..., xn giving the smallest possible value of the function f, while
still fulfilling the normalisation condition. Note that the minimum thus found does not
necessarily correspond to the unconstrained global minimum of the function f. It is rather
a conditional minimum of f, the condition being, of course, the normalisation. Thus, as
an output from this method I shall obtain the smallest eigenvalue of the matrix H, and

the corresponding eigenvector, and I have reduced the diagonalisation problem to the
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minimisation of a function f.

The reader will find a detailed review of methods, by means of which this problem can
be solved, in Ref. [95]. In this article, Payne et al. describe a wide variety of techniques,
including molecular dynamics, Car-Parinello techniques, etc. Among them I also find the
steepest descend and conjugate gradient approaches, however, Payne et al. give only a
general description of principles on which these methods operate. The specific algorithm
presented in detail in this Section has been created and implemented by the author of
this Thesis.

I have chosen these two methods for an important reason. As I mentioned in the
previous Section, the sizes of Hamiltonian matrices that I typically encounter are of order
of hundreds of thousands, and it is not possible to store these matrices in full form in
computer memory. The two iterative methods are designed to circumvent this obstacle:
they do not require the full matrix H as input, but rather the result of the matrix-vector
multiplication. This gives the user a great flexibility in the choice of matrix storage
mechanism: the user can store only nonzero matrix elements, use some symmetries of the
matrix H characteristic for the problem at hand, or even calculate the matrix elements on
the fly. The fundamental object being processed in each method is the vector itself, and
one needs to provide a workspace consisting of several such vectors. Therefore, one never
handles the object of the size of N x N, only a few objects of the size of N. Unfortunately,
this great advantage comes at a cost: the methods can only calculate one - the lowest -
eigenvalue of the matrix at a time. To obtain other eigenvalues and eigenvectors one needs
to employ additional techniques, such as reorthogonalisation. Later on in this Section I
shall describe one such technique - the spectrum folding method, which is very stable
numerically and simple to implement.

Let us start the presentation with the description of the steepest descent method.

Below I shall enumerate the steps which must be taken in the iterative procedure.

1. As mentioned before, I start with a guess vector |u)o. This vector is generated at



CHAPTER 3. METHODS OF ANALYSIS... 107

random, and should not be initialised by assigning identical values to all its entries.
This is because in doing so one might accidentally impose a symmetry on the vector
which is different from the symmetry of the actual eigenvector corresponding to the
lowest eigenvalue. In such situation the procedure might converge to one of the
excited states, which is uncontrollable, and thus discouraged. Omne cannot count
on this phenomenon as a possible way of implementing the finding of the excited
states, because the imposed symmetry can be broken due to the buildup of the
computational error incurred in each iteration. The vector generated at random
will, on the other hand, contain elements of all possible symmetries, and it will be

possible to purify it to the symmetry of the ground state.

Once initialised, the guess vector |u)o should be normalised to 1, so that (u|u) = 1.

Now I can calculate the first value of my function: Ey = f(|u)e) = o{u|H|u)o -

2. Now I need to find the direction of steepest descent. To this end let us make an
explicit use of the fact that the vector |u) must be normalised to 1 at each step
of iteration. Therefore, the next approximation of the eigenvector can be achieved

only by a rotation of the current vector by a certain angle, i.e.,
luy1 = cos(a)|u)o + sin()|g)o, (3.79)

where the auxiliary vector |g)o must be normalised to 1 and orthogonal to |u)o. This
orthogonality is required, because without it I would change the norm of |u): if |g)¢
has a component parallel to |u)o, I would add some length to the vector |u)q, which

must be avoided. To prove that, let us consider explicitely the normalisation:
H{ulu), = cos®(a) o{ulu)y + sin?(a) o{g|g)o + 2sin(a) cos(a) o{g|u)o .  (3.80)

The above norm equals 1 only if both vectors are normalised (from the first two
terms I get cos?(a) + sin®(a) = 1) and orthogonal (the third term vanishes). The

angle o will be defined afterwards, now I will focus on generating the vector |g)o.
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Let us postulate it in the form:
9)0 = (H = EoI)|uo. (3.81)

As defined above, Ey = o(u|H|u)g is the zeroth approximation to the sought energy,
calculated with the guess vector |u)o, and I is the unit matrix. Now I shall prove

that the vector |g)q is orthogonal to |u)g:
o{ulg)o = o(u[H — Eol|u)o = of{u|H|u)o — Eo o(ulu)o = Eo — Ep =0,  (3.82)

from the definition of Ey and because the vector |u)o is normalised to 1.

Let us now use the vector |g)o, henceforth called “gradient”, to rotate the guess
vector |u)o. I have shown how this is accomplished in Eq. (3.79); now I only have
to define the angle . To do that, let us calculate the next approximation to the

eigenvalue:

Ei(a) = 1(u|H|u); = cos?(a)Ey + sin?(a) o{g|H|g)o + 2sin(a) cos(a) o{g|H|u)o -
(3.83)
Note that all matrix-vector multiplications appearing in the above equation can be
carried out explicitely, because the only unknown here is a. I choose its value so
that Fj(«) is minimal, and I can do it analytically by calculating the derivative

dE(o)/da and equating it to zero. I obtain, after elementary calculations,

2 o(g|H|u)o 1 ( 2 o(g|H]u)o
tan(2a) = ; « = —arctan
(20) Eo — o{g|H|g)o 2 Ey — o{9|H|g)o

In reality the trigonometric equation dF;(«)/da = 0 has two solutions in the domain

) . (3.84)

0 < a < 271 « as written above, and « + 7/2; one solution corresponds to the
maximum, and one - to the minimum. I do not know a priori which solution to take.
I therefore need to calculate both Fj(a) and E;(a + 7/2) and compare them. The
argument corresponding to the smaller value of E; is taken for further calculations.
Using this « I can get the next approximation to the vector |u); and the energy E}

explicitely.
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The last step is to normalise |u); manually. Of course, if all the steps described above
were performed with infinite precision, this step would not be necessary. However,
I deal with finite-precision calculations, and the machine error will accumulate with

each iteration. I circumvent this problem by renormalising the vector |u);.

3. I repeat the procedure described in item 2, only treating the vector |u); and eigen-
value E; as known, and using them to calculate the next vector, |u)9, and the next
eigenvalue, Fs. I do so iteratively in a loop, until the relative difference between two
consecutive approximations of the eigenvalue is smaller than the predefined accuracy

factor:
‘ Ei1— E;

%

< EPS. (3.85)

The value FPS is defined by the user, but it should not be smaller than the re-
spective machine accuracy (typically 107!). Note that the user does not have to
preset the number of iterations, which would decrease the generality of the method.

The iterative procedure should be self-terminating - upon fulfilment of the accuracy

condition (3.85).

Let us now move on to the optimised version of the steepest descent approach - the
conjugate gradient method. The goal of the optimisation is to limit the number of
iterations necessary to reach convergence. I shall attempt to accomplish this by influencing
the choice of auxiliary vectors |g); in each iteration. This will be, however, the only
difference distinguishing this algorithm from the steepest descent method.

As described above, the directions generated in the steepest descent method are com-
pletely defined by the matrix H and the current vector |u);, without any correlation with
any previous gradients |g); or vectors |u); with j < 4. In particular, the gradient in step
i, |9)i, does not have to be orthogonal to the gradient in the step j, |g),;, which means
that I will rotate the vector |u) (at least partially) in the same direction in both steps. It

would be best, however, not to repeat the rotation direction that has already been used.
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The idea here is to orthogonalise the gradient vector in step i, |g);, to all the previous
gradients, i.e. to define a direction |d);, which is equal to the gradient |g);, but with all
previous gradients |g); projected out of it. That way each new direction will be orthogonal
to all previous ones, and I will never retrace the steps already taken. It can be proved,
however, that the problem posed in this way is over-constrained [109]: the construction of
a sequence of steps along these lines requires the prior knowledge of the solution, which
I seek.

However, instead of enforcing orthogonality of directions, I can enforce their conjugacy.

Two vectors, |z) and |y) are conjugate if they fulfill the condition
(z|H|y) = 0. (3.86)

(note that the orthogonality condition is (z|y) = 0 and does not involve the Hamiltonian
matrix H). As I shall describe, it is possible to create a set of conjugate vectors recur-
sively, retaining in memory only two immediately preceeding vectors (the generation of
an orthogonal set requires knowledge of all previous vectors).

The procedure starts by simply taking the gradient |d)y = |g)o as the zeroth direction.
I use this gradient to establish the next approximation to the eigenvector and eigenvalue,
precisely as it was done in the steepest descent method.

In the first step of the algorithm I already have two objects: the gradient |g);, and
the direction from the previous step |d)g, and I can use these two. The direction in this
step, |d); is written as

)1 = |g)1 + Buld)o. (3.87)

Note that the two vectors on the right-hand side of this equation are known; I only have
to establish the value of the parameter 8;. I do it by requiring that |d); be conjugate to

the previous direction, |d):

— _ of{d|H|g)1
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Now I look for the next approximation of the eigenvector and the eigenvalue using the
direction |d); rather than the gradient |g); itself.

In each next step of the algorithm I generate the new direction in an analogous way:

d)i = |g)i + Bild)i-1. (3.89)

Note that I only use the current gradient and the previous direction in this process. The

parameter (3; is calculated by requiring that |d); be conjugate to |d);_1, and is

_ _i—1{d[H|g)i
T LD (390

In the case of the general conjugate method, i.e., the one in which I do not require the
normalisation of the guess vector, it can be proved [109] that by this construction each
direction is conjugate not only to the immediately previous one, but to all previous di-
rections. In the current algorithm, in order to maintain the normalisation constraint, I
introduce a new element: at each step the direction |d); is additionally manually orthogo-
nalised to the previous vector |u);, before the new vector |u);y; is obtained. This is aimed
at conserving the normalisation of |u), as was already explained for the steepest descent,
but it upsets the conjugacy. The new direction |d); will be conjugate to the previous
direction, and nearly conjugate to the one before that, but the conjugacy with earlier di-
rections will be preserved to a lesser and lesser degree. This is a drawback, since it leads
only to a local improvement of the rate of convergence. However, the loss of conjugacy
does not cause the algorithm to diverge, nor converge to a wrong value; the algorithm
will simply converge slower, but always to the correct eigenvalue.

Having understood the idea of conjugacy I shall now formulate the minimisation al-

gorithm that employs it.

1. First I generate the guess vector |u)o and normalise it to 1; I also calculate Eq, as

described above.

2. I find the gradient |g)o, normalise it, and using it I find the appropriate parameter
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a as I did in the steepest descent algorithm. This parameter « is then used to

generate the next approximation |u); and Ej.

3. This step is unique to the conjugate gradient algorithm. I generate the next gra-
dient, |g); = H|u); — E1|u);, but I am not using it in the rotation of the vector.
Instead, I use the direction |d); = |g)1 + B1]|d)o, with the parameter 3; = —EJ(%}%%)%.
In general, the vector |d)} generated this way will not be orthogonal to |u);. In or-

der to preserve the norm of my approximate eigenvector |u), I need to perform the

orthogonalisation manually, e.g., by taking a single step of the well-known Gramm-

1(uld)}
1{ulu)

Schmidt orthogonalisation: |d); = |d)] — |u)1. Of course, the above expression
can be written in a simpler form - without the denominator, since the approximate
eigenvector |u); is normalised. If execution time is absolutely crucial, the denomi-

nator can then be simply set to 1, as it should be in theory. However, this may not

be so in practice due to the computer roundoff errors.

4. Now that I have the old approximate vector |u); and the new direction |d);, I can
generate the new approximate vector |u), in precisely the same way as I did for the
steepest descent - writing it as a rotation and calculating the appropriate angle .

Thus I obtain |u), and the corresponding approximate eigenvalue Es.

5. I repeat the step 3 until the convergence is reached.

To compare the performance of the two algorithms, I take the model Hamiltonian
matrix describing a two-dimensional quantum well with rigid walls, discretised on a mesh
of points. The continuous Schrodinger equation in the effective Rydberg units takes here

the form
T a.9 7] ¢(37,y) = E(;S(x,y), (391)

where 0 <z <1 and 0 <y < 1 (the length of the sides of the square well is equal 1 ag,
and the walls are infinite). Elementary analytical calculations show that the ground-state

energy in such a well is Ey = 272 Rydbergs. The discretisation scheme involves replacing
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the continuous function ¢(z,y) by the function ¢(z;,y;) defined on a mesh of discrete
points. For the model calculation, let us assume that I have discretised the system in
such a way that there are M + 2 points along each wall of the well, numbered from 0
(the first point has number 0, the second - number 1, and so on, until the last, M + 2-nd
point which has the number M + 1). Therefore the distance between points along each
coordinate axis is Ax = Ay = ﬁ The first and last of the mesh points coincide with
the wall of the well, and therefore I expect the wave function to be equal to zero on those
points. The function may assume nonzero values only on the mesh inside the well, and

this mesh comprises M? points.

I also need to discretise the second derivatives in the Schrodinger equation:

8a—;¢($, ) o P(xio1,y;) — ZdE(A.T;,)ZQJj) + ¢(wiqa, yj), (3.92)
Ti,Yj

and similarly for the derivative over the coordinate y. Upon this discretisation, the con-

tinuous Schrodinger equation (3.91) can be written as a set of linear equations of the

type
— (i1, ;) — B (@i, yj—1) +46(@i, y;) — d(@is1, y;) — (@i, yj1) = (Az)*Ed(i, y;) (3.93)

for each of the points in the mesh, i.e., for 1 < < M and 1 < 7 < M. Whenever the
above equation requires the value of the function ¢ on any of the walls of the well (i.e., for
i=0ori=M+1orj=0orj=M+1), the value 0 is explicitely introduced instead. I
also order the equations in such a way that in the first one I have ¢ = j = 1, in the second
-1 =2and j =1, etc, until I reach : = M, j = 1. After that I begin again with : = 1
but this time j = 2. I continue this sequence until I reach the equation with : = j = M.

Such a set of equations can be written in a matrix form, with a penta-diagonal matrix
H of order M? x M?. All the diagonal elements of this matrix are equal to 4, and on the
immediate upper and lower diagonal I put —1, except for each M + 1-st element along it,
which is set to zero (this is due to the rigid wall of the well, positioned next to this point

on the mesh). Also, this matrix possesses a remote upper- and lower-diagonal, filled with
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values —1, beginning respectively in the M + 1-st column and the M + 1-st row. Upon
diagonalisation of this matrix I obtain the eigenvalues ¢, which can be converted to the
values of energy by rescaling E = ¢/(Ax)?.

In these model calculations I assume M = 50 so that the simple Hamiltonian is of the

size 2500 x 2500. The target eigenvalue - the ground-state energy that I should obtain

in the diagonalisation - is ¢y = 5?7;;1 = 0.0075890845. Of course, I should not expect to
obtain this value exactly, as the factor 272 in this formula corresponds to the true solution
of the continuous equation (3.91).

The steepest descent method applied to the matrix H converged to the value of
0.007586685051830517 after 3392 iterations. The relative error EPS, as calculated in
the algorithms, was decreasing systematically in the progress of the calculation, attaining
the value of about 7.16 - 109 after first 500 iterations, about 7.82 - 109 after first 1000
iterations, and 1.41-107!! after 2000 iterations. Thus I deal with a long convergence tail.
As for the conjugate gradient applied to the same matrix, it converged to the value of
0.007586685051823797 after only 174 iterations. A comparison of relative errors EPS of
both methods as a function of the number of iterations is shown in Fig. 3.1. Note that
the line corresponding to the steepest descent method exhibits some oscillatory behaviour
just before reaching the convergence. The line corresponding to the conjugate gradient
method does exhibit such behaviour as well, but to a much smaller degree. This perfor-
mance comparison shows clearly the superiority of the conjugate gradient method over
the steepest descent. The latter converged after taking more steps than the order of the
matrix itself, whereas the conjugate gradient method converged after the number of steps
equal to about 7% of the order of the matrix.

Both the steepest descent and conjugate gradient methods are capable of finding the
ground state eigenvector and eigenenergy only. The last issue that I need to address

is the use of the iterative methods in finding not only the ground, but also the excited

states of the system. To this end I employ a technique called the spectrum folding
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Figure 3.1: Relative error of the steepest descent (solid line) and the conjugate gradient

(dashed line) methods as a function of the iteration number.
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method, used extensively in large computations, e.g., by the group of Alex Zunger [28].
Preparation and implementation of the spectrum folding algorithm in the form described
below, and coupling it with the conjugate gradient method is an original work of the
author of this Thesis.

The spectrum folding method involves constructing a new Hamiltonian Hs, whose
ground-state eigenvector is identical to the eigenvector corresponding to one of the excited

states of the original Hamiltonian H. The new Hamiltonian is postulated in the form:
H, = (H —€l)’, (3.94)

where ¢ is a user-supplied number with dimension of energy, and I is the unit matrix. Let
us explain the meaning of the number ¢ later. First I shall look at the eigenvectors of Ho.
Let us assume that the vector |v) is one of the eigenvectors of the original Hamiltonian
H with the eigenvalue E, i.e.,

H|v) = E|v). (3.95)

I have

Hylv) = (H —el)(H —el)|v) = (E —¢)*v),

which means that the vector |v) is also an eigenvector of Hy, but with eigenvalue (E —¢)?.
Thus, in transition from the Hamiltonian H to H, the eigenvectors are unchanged, and
the energies are transformed quadratically: E; — (E; —¢)2. To see what this gives me, let
us assume for a moment that the original Hamiltonian H has both positive and negative
eigenvalues, and let us take ¢ = 0. Clearly, upon transformation to the Hamiltonian H,
all the eigenvalues will be squared, so that all the negative eigenvalues will acquire the
positive sign. Thus, by transforming H to H,, I have parabolically “folded” the spectrum
of the original Hamiltonian H. Note that the ground state of the Hamiltonian H, will be
different than the ground state of H - in fact, the ground state of H, will be one of the
excited states of H, the one, whose absolute value of eigenenergy was originally closest to

zero. Now, if I tune the parameter ¢, I can additionally shift the energy spectrum of H,
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which gives an ability to bring the eigenenergy of the chosen excited state of H to zero.
This guarantees that the chosen excited state will become the ground state of H,, and I
can find it using the conjugate gradient algorithm. By appropriate tuning of € I can thus
find all the eigenstates of H, and the eigenenergies that correspond to them.

The last issue I shall address here is the choice of the most efficient way of tuning the
shift €. In principle, one could simply change it in some small steps over a chosen region
of values. That would, however, require a long time, necessary to perform such a large
number of iterative diagonalisations. There is also a danger that the eigenvalues of H can
be clustered in such a way that the gaps between them are smaller than the step taken in
tuning the shift ¢; such eigenvalues would be impossible to resolve with this procedure.
To circumvent, these obstacles, I propose a more efficient tuning scheme, involving partial

reorthogonalisation of the guess vector. I proceed in the following way:

1. Find the ground-state eigenvector and eigenvalue of the original Hamiltonian H. To
this end, I do not have to fold the spectrum, since the conjugate gradient method is
constructed to find the lowest eigenvalues of matrices. The ground-state eigenvector

found in this step is stored for further processing.

2. Find the approzimate first-excited-state eigenvector and eigenvalue by performing
the conjugate gradient minimisation with the original Hamiltonian H, but imposing
an additional constraint on the guess vector |u) in each iteration: not only does it
have to be normalised, but also orthogonal to the ground-state eigenvector found
and stored in the previous step. The orthogonalisation is accomplished by means of

the Gramm-Schmidt procedure.

3. Use the approximate eigenvalue of the first excited state - found in the previous
step - as the shift . Use this shift to construct the Hamiltonian Hs, and perform
the conjugate gradient procedure with it. The shift causes the first excited state of

H to be the ground state of H, with corresponding eigenvalue equal to zero. The
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eigenvector found this way is stored for further processing.

4. Repeat steps 2 and 3 for higher and higher states of H, “guessing” the approximate
eigenvalue corresponding to each of them by performing the conjugate-gradient min-
imisation with reorthogonalisation to all eigenstates previously found, and use this
approximate eigenvalue as the shift in Hy. The reorthogonalisation procedure is not

used in this step.

Note that this shifting-and-reorthogonalisation procedure allows to resolve even those
eigenstates of H, whose eigenvalues are degenerate. Unfortunately, I pay for this func-
tionality by extended storage requirements - I need to store all the eigenvectors found in
subsequent steps. This may make it impossible to find all the eigenvalues and eigenvectors
of H, but in my calculations I will be interested in resolving only the ground and several
excited states of the system anyway. The most important feature of the proposed method
is the fact that the numerical error, accumulating in the reorthogonalisation, does not
affect the eigenvalues, since the reorthogonalisation steps are taken only in evaluating the

optimal shift, and not the final result.

3.4 Other methods accounting for electronic correla-

tions

In this Chapter I have built the optimised exact diagonalisation technique for many-body
systems confined in QD potentials, and I have demonstrated its operation on a system
of several interacting electrons confined in a two-dimensional parabolic potential. As I
have shown, this method involves building a basis set out of electronic configurations,
constructing the Hamiltonian matrix in this basis and diagonalising it numerically. This
approach treats all aspects of the Coulomb interaction on equal footing (without any

approximations), and therefore the results it gives are, in principle, ezact. However, as [
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have shown, the basis of many-particle configurations in a parabolic confinement is infinite,
and, to be able to perform computations, I need to restrict it by considering only a finite
number M of single-particle states, on which I distribute my electrons. This is, in fact,
the only approximation of this method, and I can control it by performing convergence
studies, in which I examine the ground-state energies of the system as a function of the
parameter M. In Section 3.3 I have shown that even with the cutoff the number of
electronic configurations necessary to obtain a well-converged result increases factorially
both with the number of electrons N and the number of single-particle states M. This
makes the method extremely unwieldy for larger electron numbers; using present-day
computers I was only able to treat at most nine interacting particles.

But often of interest are properties of larger systems, and in these cases the configura-
tion-interaction method can only be used to form general intuitions about their properties,
as the limitation of the basis to manageable sizes prevents me from reaching convergence.
In these cases other - approximate - methods must be used. Here I shall briefly describe
two of such methods - the spin density functional theory (SDFT) and the quantum dif-
fusion Monte Carlo method (QDMC) - which are also capable of resolving correlation
effects, albeit in an approximate manner. The main point of this presentation is the fact
that the results obtained with these methods can be compared to those of the exact di-
agonalisation for systems in which the performance of the latter technique is adequate.
This allows to control the approximations made in SDFT and QDMC, so that, when these
methods are applied to larger systems, their results are more reliable.

My description of SDFT and QMC methods will be limited to fundamentals only, as
I shall not use them in the rest of this work. My goal here is to inform the reader of their

existence and provide the appropriate literature context.
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3.4.1 Spin density functional theory

In this Section I shall describe the fundamentals of the spin density functional theory. This
description will be based on original papers of the contributors to this theory, but the
reader can find excellent reviews of the subject in Refs. [116, 127]. To ensure consistency
I shall use the notation proposed in these publications.

The development of the density functional theory (DFT) was started by P. Hohenberg
and W. Kohn in 1964, who proved [60] that the energy of a system of interacting particles
in an external potential is a unique functional of electronic density. In their work they

introduced the following notation:

7To= —Qh—n; / dr¥* (r) AU (r); (3.96)
Vo= / drV (r) U (r) ¥ (r); (3.97)
W= %%2 [ | dr'|r_17r,|\11+(r)\lf+(r')\Il(r')\If(r). (3.98)

Here, T is the kinetic energy operator, V is the operator introducing the external potential
V(r), W is the operator introducing the Coulomb interactions. The Hamiltonian of the

system can be written as a sum of all these operators:

~ ~

H=T+V+W. (3.99)

Moreover, ¥(r) are the field operators; with their use the electronic density operator can

be written as

i(r) = U (r)¥(r). (3.100)

The Hohenberg-Kohn formalism treats the electronic density n(r) as the central quan-
tity, by means of which all properties of the system can be described completely. In fact,
even the electronic wave functions |¥[n]) are functionals of the density. Now, the expecta-
tion value of any observable O can be expressed as O = (¥[n]|O|¥[n]), and, in particular,
the energy

E[n] = (¥[n]|H|¥[n]) (3.101)
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is a unique functional of density. This ezact result is the Hohenberg-Kohn theorem.

The formula for energy as a functional of the electronic density can be used to find the
ground-state energy Egg of the system. Hohenberg and Kohn prove that Egs = E[ng(r)]
if the density ng(r) fulfils two conditions: first, it minimises the functional E[n|, and

second, it is normalised to give
N[n] = / drn(r) = N, (3.102)

where N is the number of electrons in the system. The greatest strength of the Hohenberg-
Kohn theorem is the fact that it allows to work with a three-dimensional electronic density
instead of the 3/N-dimensional electronic wave function. As I shall show, this allows
to treat electronic systems far larger than those treatable by the exact diagonalisation
method provided that one is able to correctly minimise the energy functional for these
systems.

In treating the electronic density up to now I have neglected the spin degree of freedom.
This quantum number is, however, essential for systems of interest, as I have already
demonstrated in Section 3.3.2. The inclusion of electronic spin into the DFT formalism
in early 1970s led to the development of the spin density functional theory (SDFT) [13,
100]. In SDFT, the electronic density n(r) is replaced by a pair of densities, n4(r) and
ny(r), corresponding to electrons spin up and spin down, respectively. Therefore the
field operators ¥ acquire an additional index, and are denoted as ¥,(r), and in the
definitions (3.96), (3.97), (3.98) of energy operators the integration over coordinates must
be supplemented by the summation over spins. Now the total energy of the system is a

functional of the two densities,
Elny, ny] = (¥ng, ny][H|¥[ng, ny]), (3.103)

and the ground state energy Fgg[ns,n)| can be obtained by minimising the above func-

tional with respect to both densities under constraints

/ drna(r) = Ny, (3.104)
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/drm(r) = N, (3.105)

N;+ N, = N, (3.106)

where N; (N;) is the number of electrons spin up (down).

The latest density-functional theories include an additional term in the Hamiltonian,
accounting for the interaction of currents, created by orbiting electrons, with the magnetic
field. This is the so-called current-spin density functional theory, developed by Vignale
and Rasolt [125]. However, the current corrections - at least in the quantum-dot systems
- have been shown to be very small [116, 127], and I shall not describe them further.

I have defined the object on which I need to work: the total energy as a functional
of the electronic densities. Let us now briefly describe the minimisation procedure of
this functional, used to obtain the ground state energy and density of the system. This
procedure was developed by W. Kohn and L. Sham in 1965 [67]. To simplify the descrip-
tion, let us follow their notation and drop the spin index in densities and functionals; all
the derivations presented below can be naturally extended to resolve the spin degree of
freedom. To arrive at the famous Kohn-Sham equations, let us introduce an additional
density functional

Fn] = (¥[n]|T + W |¥[n]), (3.107)
being the expectation value of the Hamiltonian without the external potential V. It is

further convenient to isolate the so-called exchange-correlation energy:

Excln] = Fln] — n]———/d /d’ r_r,| (3.108)

Thus, Ex¢ is obtained by subtracting from the functional F' the kinetic energy func-
tional 7" and the direct Coulomb energy functional (the last term in the above equation).
Ex¢ carries only the effects of exchange and electronic correlations. Hohenberg and
Kohn proved [60] that if the densities n,(r) are slowly varying functions, the exchange-

correlation energy can be written as

Exoln] = / drn(t)excn(r)], (3.109)
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where exc in a uniform electron gas is the exchange-correlation energy per electron.
Now the total energy functional can be minimised with respect to the density. To
this end, the energy functional (3.103) is functionally differentiated with respect to the

density and this derivative is equated to zero. One obtains [67]

/d b {5T[n /d i +ch[n( )]} 0, (3.110)

with the constraint

/drén(r) = 0. (3.111)

In the above equations, pxc[n(r)] = d(nexc[n(r)])/dn(r) is the exchange-correlation
contribution to the chemical potential for the electron gas.
Solving the above equation for the density n(r) is equivalent to solving the single-

particle Schrédinger equation

h2
{_2m*A+V /dr

for each electron. Thus, each electron moves in the mean field created by the external

el 60 = B G2)

potential V(r), the direct Coulomb repulsion with all other electrons, and the potential
ixc taking into account the exchange and correlation effects of the electronic system.
The wave function ¢;(r) is the ground state of the electron in this effective potential (the
Kohn-Sham orbital).

Since the effective potential experienced by each electron depends on the behaviour
of all other electrons, the equation (3.112) must be solved self-consistently. The process
starts by assuming some initial density n(r) (e.g., constant), and calculating the wave

functions ¢;(r) for each electron. Next, the electronic density is recalculated as follows:

= ; A (3.113)

and the new density is used to solve for the ground state wave functions of each electron.

The procedure is repeated until the density profile n(r) converges, i.e., subsequent steps
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do not change the density any more. The final density can be further used to calculate
the total energy of the system via the energy functional E[n].

As I mentioned before, extension of the Kohn-Sham equations to include spin is
straightforward. The only modification is due to the fact that now the exchange-cor-
relation potential yxc depends on the spin o, and one formulates separate set of Kohn-
Sham equations for electrons spin up and for electrons spin down. As a result, one obtains
Kohn-Sham orbitals with additional spin quantum number, and by summing their squared
moduli as presented above one arrives at the densities of electrons spin up and spin down.

The Kohn-Sham equations (3.112) have been derived without any approximations,
and so they describe the electronic properties of the system in the eract manner. How-
ever, I cannot solve them yet, since the exact form of the exchange-correlation functional
pxcln(r)] is not known. Unfortunately, this functional cannot be obtained from first
principles. The forms most commonly used in this context are postulated on the ba-
sis of extrapolations from the few exact results available. Frequently one assumes that
the exchange-correlation potential pxc can be locally approximated by the potential for
an infinite system at constant density [104]. This is the “local spin density approx-
imation”. The parametrisation of choice, commonly used in the context of parabolic
two-dimensional quantum dots, is that of Tanatar and Ceperley [120]. These authors
obtained the exchange-correlation functional of the two-dimensional gas as a Padé ap-
proximant. This approximant is constructed by fitting to the available quantum Monte
Carlo results obtained for selected values of electronic density.

This necessity of postulating the exchange-correlation functional unfortunately makes
the SDFT only an approximate theory. Nevertheless, it is widely used to examine the
properties of many-electron quantum dots with electron numbers far exceeding the capa-
bilities of the exact diagonalisation method. In Section 1.5 I have discussed some of the
applications of the SDFT method to electronic QDs. For references and reviews of this

field, I refer the reader to Refs. [11, 59, 75, 102, 104, 111, 128]. The density-functional
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approach with the Thomas-Fermi-Dirac-von Weizsicker energy functional can also be ap-
plied to arrays of quantum dots; for instance, the magnetoplasmon excitations in such
arrays were analysed in Ref. [132]. In the context of comparing the SDFT method with
the exact diagonalisation approach the work by Wensauer [127] is particularly interesting:
the author attempts to extract the exact form of the exchange-correlation potential from
the results of the exact diagonalisation for systems with few electrons, in which both

methods can be applied with the same accuracy.

3.4.2 Monte Carlo methods

Let us now describe a different approach to the many-body problem, involving random
sampling of the parameter space of the system and analysing the results obtained this
way by statistical methods. Due to this random sampling process, this approach is widely
known as the quantum Monte Carlo method (QMC). In reality one can name several
quantum Monte Carlo methods, differing in the definition of the parameter space being
sampled. A review of these methods can be found in several papers by D. Ceperley [29],
in which the author presents the main principles of the variational QMC, path integral
QMC, Green’s function QMC and the diffusion QMC. Each of these techniques is usually
used in a slightly different context. For instance, in the variational QMC one defines a
trial variational wave function of the system, and, using the variational principle, one tries
to find the minimum of the expectation value of the Hamiltonian in this state. The wave
function usually depends on several parameters, whose optimal values must be found,
and the calculation of the expectation value of the energy usually involves calculating a
multi-dimensional integral. Both tasks can be accomplished using Monte Carlo sampling.
In path-integral QMC all the possible paths the system can take in its evolution are
explored, usually using the rejection algorithm of Metropolis et al. [84]. Here, however, I
shall focus only on the quantum diffusion Monte Carlo technique (QDMC), because it is

frequently used to study the properties of systems of many interacting electrons confined
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in quantum dots.

Perhaps the best introduction to the subject can be found in Ref. [3], where Anderson
describes the application of QDMC to study the properties of the H; molecule, composed
of three protons localised in the corners of an equilateral triangle, and two interacting
electrons with antiparallel spins moving in their potential. The description starts with
the simple one-dimensional time-dependent Schrédinger equation, written for a single
particle moving in a potential V' (z):

L oY(z,t R 0%(x,t
ik ((3": ):2m* aif;" ) (3.114)

The key point of the method consists in introducing the imaginary time 7, defined as

t
=1—. 3.115
T=ly ( )
The Schrodinger equation written in terms of this parameter takes the form
2 52
Ovle,T) _ W OWET) (e, m). (3.116)

or 2m*  0z2

Clearly, the above differential equation can be easily integrated over the imaginary time,

and its solution will have the form

b(w,7) = P(x)e™ "7, (3.117)

where the orbital part 1(z) of the wave function and the energy E must be obtained by
solving the stationary Schréodinger equation, defined by the right-hand side of Eq. (3.116).
Note that the form of Equation (3.116) is similar to that of the diffusion equation in
real time:
oC 0°C

where D is the diffusion constant, C' is the distribution of diffusing particles, and & is a
rate term, describing the decay of the population of diffusing particles. The idea of the
QDMC technique is to use this analogy, and model the imaginary-time evolution of the

system as the game of chance, using “ particles” as random walkers.
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By mapping the equation (3.116) onto the equation (3.118) one sees immediately that

h2

for each random walker ¢ situated at the position z the “diffusion constant” D = 5 —,

and the “rate term” k = V/(z), i.e., it is equal to the value of the potential V at the point
where the random walker is. The simulation is organised in such a way that the imaginary
time 7 is advanced in steps A7, and during this time interval the random walker changes
its position by Ax. These quantities are, of course, not independent; according to the

Einstein relation [94]
1 (Az)?
2 Ar

In the absence of the rate term £ the diffusion equation can be solved analytically,

=D. (3.119)

and the probability that the random walker takes the step of length Az in time interval

AT exhibits a Gaussian distribution:

W(Az) = \/21?0 exp (— (352) ,) (3.120)

where the parameter 0 = vV2DA7. This is why in this game of chance after each time

step A7 one moves the random walkers by distances Az selected at random according
to the Gaussian distribution, and accounts for the rate term (i.e., the existence of the
external potential) by conditional deaths or births of random walkers.

I can now formulate the general QDMC algorithm for my problem, posed by defining

the Schrodinger equation for a M-particle system

oy [ n? B
3= ; 2miAi — (V= Vieg) | ¥ = —(E — Viep)tb. (3.121)

1. In the first, preparatory step, one creates N random walkers distributed randomly
in real space. If the problem has a single-particle nature in three dimensions, each
random walker will be remembered as a triplet of numbers, defining its coordinates.
If the problem involves more particles, say M, each random walker will have 3M

coordinates, defining the position of each particle in space.

2. Now the simulation time is advanced by A7 (this time interval is chosen by the

user). All coordinates of each random walker are changed by the step Ax selected
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at random with the Gaussian distribution as described above. Of course, steps for
each coordinate of each random walker are chosen independently, so that in each

case we deal with the real random walk in 3M-dimensional space.

3. Next one accounts for the rate term k. In this simulation, as already mentioned,
the value of this rate term equals to the value of the potential at coordinates of each
random walker, and is clearly different for each walker. In general, it is not just the
confinement potential, but it also contains all relevant particle-particle interactions.
For instance, for my interacting electrons the rate term will comprise both the value
of the parabolic potential corresponding to a given distribution of electrons in space,

but also all Coulomb interactions between each pair of electrons.

The probability of birth or death is calculated by comparing the full potential V' of
a given walker to a certain reference potential V¢, used to control the population of
walkers; I shall define this potential later. Here let us only state that the probability

of birth for each walker is

Pg=—(V - V;ef)AT it V<V,
Ps=0 it V> Ve,

and the probability of death is

Pp = (V= Viep)Ar if V>V,

P, =0 if V< V.
For each walker one select at random a number from the region (0, 1) (with uniform
distribution) and compares it to the above probabilities. If this number is smaller
than Ppg, another, new walker is introduced at the position of the current one (birth),
and if it is smaller than Pp, the current walker is removed from the population. Note

that by doing so I, in general, change the number N of random walkers.

4. The procedure outlined in points 2 and 3 is repeated until the population of random

walkers reaches the steady state distribution.
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I must now develop tools allowing me to derive meaningful physical information from
the random walk procedure. First of all, let us define the reference potential V,.; as

N — Np

‘/ref = ‘/avg - m

(3.122)

The number Np is the target number of random walkers. If the current population N
is smaller than Np, the reference potential will favour births of walkers; if N > Np, the
reference potential will favour their deaths. In the above formula, V,,, is the average po-
tential of random walkers, calculated by adding the potential of each walker and dividing
by the current number of walkers N. Second, it can be proved [3] that upon reaching the
steady-state distribution, the total energy of the system is simply F = V,,,.

The procedure I have just described contains no approximations, and therefore should
give exact results within the numerical accuracy of the algorithm. In practice, in order
to be able to perform a meaningful statistical study, it is advisable to take large popula-
tion of walkers and small time steps A7. Another improvement in the efficiency of this
algorithm can be introduced by the so-called importance sampling [3]. In real systems the
random walkers are usually distributed nonuniformly, reflecting the fact that usually the
probability of finding the particles is larger in some areas, and smaller in others. There-
fore, it is not efficient to sample all these regions in the same way: regions, where the
wave function is expected to assume the largest values, should be sampled preferentially.
To introduce this importance sampling, one usually prepares a trial function, reflecting
the expected steady-state distribution of walkers, and one modifies the QDMC algorithm
so that only the difference between the actual and the trial distributions is calculated.

The quantum diffusion Monte Carlo algorithm can be applied directly to single par-
ticle problems, and problems of many interacting bosons. However, in the case of many
interacting fermions it is necessary to modify the approach in order to account for the
antisymmetry of the wave function of the system. From the above description it is clear
that the distribution of the random walkers is a measure of the wave function distribution

in the system, but the method cannot yield negative distributions. But for many-fermion
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systems there must be regions, where the total wave function of the system assumes pos-
itive values, and other regions, where it is negative. The QDMC algorithm in such cases
is constructed in such a way that the motion of random walkers is constrained to areas,
where the function is positive, and, at the same time, only those areas that are not con-
nected via the permutation operator. This is an important difficulty, since in order to be
able to execute the algorithm, one must know in advance where the nodes of the total
wave function are so that the motion of walkers can be restricted only to the appropriate
regions between nodal surfaces. To achieve this goal, several techniques were developed,
usually involving some kind of trial wave function 7 as an input [3, 23]. The trial
function can be prepared, e.g., by performing the SDFT calculation first, arranging the
Kohn-Sham orbitals in a single Slater determinant, and determining the nodal surfaces
of such many-particle function [22, 49].

Another difficulty appears in treatments of interacting fermions in the presence of
an external magnetic field. Since in such cases the real-space Hamiltonian exhibits a
broken time-reversal symmetry, the wave functions are usually complex, and the magnetic
field usually couples to their phase [93]. In this case it is possible to write the complex
Schrodinger equation as a set of two coupled real equations: one for the modulus, and
one for the phase of the wave function, and the equation for the modulus is already of
the bosonic nature, i.e., does not suffer from the sign problem. The procedure here is to
make a choice for the phase, and solve for the modulus exactly (that is, exactly within
this particular choice of the phase) using the diffusion algorithm.

The QDMC and other Monte Carlo techniques are extensively used in the context of
many-electron quantum-dot systems [22, 40]. In the paper discussing the exact diagonal-
isation method optimised for the harmonic-oscillator basis set (Section 3.3.2), we have
briefly presented a comparison of energies obtained with this method and with QDMC,
and shown an excellent agreement of the results of these two techniques. However, it

is clear that the QDMC method is capable of handling much larger systems than the
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exact diagonalisation. The only real difficulty arises in constructing the fixed-node or

fixed-phase schemes, whose level of complexity increases with the increase of the number

of electrons.



