Chapter 4

Electronic correlations as a function

of the confinement energy

In Chapter 2 I have found the single-particle spectra of the most important classes of
QD potentials, and in Chapter 3 I have formulated the problem of many interacting
particles confined in QDs. In order to solve this problem, I have introduced the exact
diagonalisation method with optimised many-particle basis set. 1 have demonstrated
that this method treats all aspect of particle-particle interactions on equal footing, and,
within the assumed cutoff of the single-particle basis, delivers the exact eigenenergies of
the system. In the following chapters I shall use the theoretical tools thus constructed to
analyse the properties of systems of many interacting particles confined by nanostructures
with various geometry, with special attention devoted to the manifestations of particle-
particle correlation effects.

My presentation starts with the description of properties of N electrons confined in
a parabolic quantum dot at zero magnetic field. This description is given in the paper
“Designing quantum systems in self-assembled quantum dots”, by M. Korkusinski, W.

Sheng, and P. Hawrylak, published in Physica Status Solidi (b), vol. 238, page 246
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(2003). This publication is an integral part of this thesis and is appended to the presented
material. Below I shall highlight the most important points of this work.

Let us start by comparing the energy scale of the single-particle energy quantisation
with that of Coulomb interactions. For a parabolic dot the fundamental scale of the
single-particle energy quantisation is introduced by the characteristic oscillator energy
Qo = hwy/R (see Section 2.1; R is the effective Rydberg). As for the interactions, their
strength can be measured, e.g., by the magnitude of the fundamental Coulomb matrix

element described in Section 3.1.2:

(00, 00|v]00, 00) = Ey = (4.1)

~[%

where the oscillator length ¢ at zero magnetic field, when expressed in the effective Bohr
radii, is simply £ = 1//Qy. Therefore, the characteristic energy Ey = /7).

Let us now compare these two energy scales. The single-particle energy quantisation
scales linearly with the oscillator energy, while the interactions scale as square root of 2.
Then, as I tune €y - by changing the dot size in the case of SADs, or by tuning the gate
voltage in the case of gated devices - I can change the ratio of these two energies. The
characteristic single-particle energy becomes equal to that of interactions when €y = 7.
If the confinement is stronger (€y larger), then the single-particle energy quantisation
is larger than interactions, and if the confinement is softer (o < 7), the situation is
reversed.

Thus, when considering the system of many interacting particles one expects to find
two regimes. In QDs with strong confinement the single-particle energy quantisation
dominates, and one can construct the ground state of the system just by distributing the
particles on the single-particle levels with the lowest energies, seeing only that the Pauli
exclusion principle is satisfied. The total energy of the system can be then calculated
perturbatively. On the other hand, for QDs with sufficiently soft confinement the interac-
tions will dominate the energy landscape of the system. One expects strong configuration

mixing, and so one can no longer anticipate the ground-state configuration reliably: it
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has to be calculated. It is possible that the ground states of the systems in each of the
regimes will be different.

To demonstrate this, I shall now consider a system of three electrons in a parabolic
quantum dot with two single-particle shells. As I demonstrated in Section 2.1, the lowest,
s shell in the parabolic potential consists of one doubly-spin-degenerate state with single-
particle angular momentum [ = 0. The second, p shell, on the other hand, consists of
two doubly-spin-degenerate states, one with angular momentum /[ = —1, and one with
angular momentum [ = +1. This simple structure of the single-particle energy levels is
presented in Figure 4.1 (a) and (b).

Let us now distribute my three electrons on the three orbitals. If I were to assume
that the particles do not interact, the natural choice of the candidate for the ground
state of the system would be that shown in Fig. 4.1 (a), since it has the lowest total
energy. This configuration is built out of two electrons with opposite spins distributed
on the s shell, and the third electron on the p shell. The total angular momentum of
this state is 0 + 0 + (—1) = —1, the total spin S = 1/2, and the projection of the total
spin S, = —1/2. One can construct another state with the same energy by putting the
third electron on the other orbital of the p shell. This configuration would have the
same total spin and projection as the previous one, but the total angular momentum of
+1. Since the angular momenta of the two configurations are different, the Hamiltonian
does not couple them, and they can be considered independently. Moreover, due to the
symmetry of the system at zero magnetic field, the energy levels corresponding to these
two configurations are degenerate, so it is sufficient to consider just one of them. The
configuration |L,S,) = | — 1,—1/2) shown in Fig. 4.1 (a) is not the only configuration
that can be generated with this particular suite of quantum numbers. Another one would
involve leaving the s shell completely empty, and putting one electron on the orbital
with [ = 1, and two electrons - with opposite spins - on the orbital [ = —1. Therefore,

the configuration I have chosen is not the exact many-body state of the system since
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Figure 4.1: The configuration of the three-electron system with quantum numbers
|L,S,) =|—1,-1/2) (a) and |0, —3/2) (b). The graph (c) shows the expectation values of
the total energy of the system as a function of the confinement energy €2y for the low-spin

state (green line) and the high-spin state (red line)
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it is mixed with the other one by Coulomb interactions. I shall include the effects of
configuration mixing later on.

Let us now consider a different configuration, presented in Fig. 4.1 (b). This is the
only way of distributing the three electrons on single-particle states if I require that all of
them have the same spin. The total angular momentum of this configuration is zero, the
total spin S = 3/2, and the projection of the total spin S, = —3/2. This configuration,
further referred to as |L, S,) = |0, —3/2), is the only configuration in its suite of quantum
numbers, and is thus an ezxact many-body state in the two-shell approximation.

Let us now compare the energies of these two states as a function of €)y. The cor-
responding total energy in each case is calculated as the expectation value of the full
many-body Hamiltonian

H= Z E(i,0)ctcig + % Z (io, jo'|V|ka', lo)ch ¢l Cror i (4.2)

io ijkloo’
Using the energies of single-particle states E(nmo) = Qy(n+m+1) obtained in Section 2.1
and the Coulomb matrix elements calculated in Section 3.1.2, I can express these energies

in the following form:

E_l’_l/g = 490+225 ﬂ'QO; (43)

E()’_g/g = 5Qo+15 7TQO. (44)

The low-spin state has lower orbital energy, but higher interaction energy as compared
to the high-spin state. Therefore, for strong confinements (large {29) one may expect
the low-spin state to be lower in energy than the high-spin state, and for small €}y the
situation may be reversed. This is indeed the case, as can be seen in Fig. 4.1 (c). In
this graph I present the above energies as a function of the confinement energy €2y. For
strong confinement the low-spin configuration is the ground state of the system. But as
)y is decreased, the two energies cross, and a transition to the high-spin state occurs.
This transition takes place at a critical value of confinement energy, further referred to as

QF. Note that this transition is due entirely to the interplay between the single-particle
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(orbital) energy quantisation and direct and exchange Coulomb terms. In this simple
model correlations play no role, since I have not considered the interaction mixing effects
in the low-spin subspace.

To include the correlation effects in a controllable fashion, let us perform the exact
diagonalisation study as a function of the confinement energy {2y and the number of
confined shells Ng. This time I fully account for all configurations possible within each
subspace. Thus, the basis sets of the low-spin and the high-spin subspace no longer
contain just one configuration, but the sizes of these sets grow factorially with Ng. This
is shown in Fig. 4.2 (a), where I give the number of configurations in the low-spin (green
bars) and high-spin subspace (red bars) as a function of Ng; inset to this figure shows
the ratio of these numbers. Note that for all values of Ng except for Ng = 3 this ratio is
approximately 2 : 1, while for Ng = 3 it is almost 3 : 1.

With these basis sets I have performed the exact diagonalisation studies as a function
of the number of shells, and in most cases have observed the low-spin-high-spin transition.
The characteristic value of confinement energy Q7 as a function of Ny is shown in Fig. 4.2
(b). I see, in general, that as I increase the number of shells, the transition occurs for
lower and lower confinements, with the exception of Ng = 3, where the transition does not
occur at all (the ground state is the low-spin state for all values of €y). This behaviour can
be understood in the context of the number of available configurations in each subspace.
As can be seen in Fig. 4.2 (a), for all Ng there are more low-spin configurations than
the high-spin configurations. This is due to the fact that in the case of low spin one can
distribute two electrons on the same orbital, while for spin-polarised configurations this is
forbidden by the Pauli principle. The low-spin states, although not favoured by the direct
and exchange Coulomb terms, have a correlation advantage over the high-spin states due
to larger correlation mixing effects. It is particularly visible in the case of Ng = 3, where
the low-spin basis set is particularly large as compared to the high-spin set, and the

correlation advantage thus gained causes the low-spin state to be the ground state of the
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Figure 4.2: (a) Number of configurations in the low-spin subspace (L = —1, S, = —1/2
- green bars) and in the high-spin subspace (L = 0, S, = —3/2 - red bars) for a three-
electron system as a function of the number of single-particle shells Ng. Inset shows
ratios between these numbers. (b) Critical confinement energies (2} marking the low-spin
- high-spin transition as a function of the number of shells Ng. For Ng = 3 there is no

transition
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system for all confinement energies. The progressive increase in basis sizes also causes
the critical value QI to decrease with the increase of Ng, and saturate around Ng = 5,
where the convergence of the low-energy configurations is already achieved (at this stage
further increase of Ng supplements the basis sets only with high-energy configurations,
having a negligible effect on the lowest-energy states). As can be seen, by changing the
number of available single-particle shells one can tune the electronic correlations. This
tuning can be realized in the case of self-assembled quantum dots by engineering these
nanostructures to contain only a desired number of single-particle orbitals.

The paper invoked in the beginning of this Chapter describes similar evolution of
the system with the number of shells and confinement energy for up to eight confined
electrons. The most important aspect of this work is the fact that one can create magnetic
moments in quantum dots by appropriately engineering its single-particle and many-
particle properties: the shell spacing, the number of confined shells, and the number of
electrons distributed on them. For instance, in the case of Ng = 4 shells the electrons
tend to align their spins as the confinement energy €2 is lowered, which means that the
Hund’s rules and the magnetic moments associated with half-filled shells are not valid in

the regime of strong interactions.



