Chapter 6

Correlations in a coupled

quantum-dot molecule

In the two previous Chapters I have discussed the manifestations of correlations in a
system of N electrons confined by a parabolic quantum dot. In this Chapter I shall move
on to considering correlation effects in more complicated systems, composed of electrons
and holes confined in self-assembled quantum dots.

My approach to the electronic systems involved distributing the electrons on the single-
particle levels of the parabolic potential and analysing how the configurations thus created
are coupled by Coulomb interactions of the carriers. I demonstrated that the strength of
interactions relative to characteristic single-particle energies could be tuned by changing
either the confinement energy €2y or the external magnetic field. Such tuning is more diffi-
cult in the case of SADs. In Section 2.2 T have shown that for these structures the orbital
energy quantisation is so strong that even the magnetic fields of magnitudes of order of 10
T modify the spectra only slightly. The only way of influencing the ratio of single-particle
orbital to interaction energies is thus the manipulation of the QD confinement. In this

Chapter I shall move from weakly to strongly interacting systems not by changing €y of
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a single QD, but by changing the separation between two coupled quantum disks.

A schematic diagram of the system of two vertically coupled quantum disks is presented
in Fig. 6.1 (a). The disks have the same height H and are horizontally aligned in such a
way that they share the axis of rotational symmetry. The disk radii are denoted as R;
(bottom disk) and R, (top disk); in general, Ry # R,. Each disk is formed on a thin
wetting layer, and the thickness of the tunnelling barrier between disks is controlled by
the distance D between these layers. The quantum-mechanical coupling between the two
dots leads to formation of quantum-dot molecular orbitals analogous to those found in
diatomic molecules. Energies corresponding to these orbitals are sensitive to the distance
between dots, and therefore by tuning the distance D one can tune the single-particle

energy spectrum of the system.

6.1 Single-particle states of the QD molecule

Before I can consider the system of many particles confined in the double-dot molecule,
I first have to analyse its single-particle energy spectrum. This analysis is presented
in the paper “Electronic structure of vertically stacked self-assembled quantum disks”,
published by M. Korkusinski and P. Hawrylak in Physical Review B, vol. 63, page 195311
(2001). This publication is an integral part of this thesis and is appended to the presented
material. Here I shall summarise its most important points.

Let us start with a simple model of a single electron confined by the molecule composed
of two identical disks. Let us also assume that the single-particle energy spectrum of each
individual disk consists of a single orbital, whose energy will be denoted as E;. Since the
disks are identical, the energy FE of the top disk is equal to that of the bottom disk. In
the absence of interdisk tunnelling, the electron can occupy either the bottom disk (say,
disk 0) or the top disk (disk 1). Its state can therefore be labelled by the quantum-dot

layer index, or isospin: |0) or |1).
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Figure 6.1: (a) Schematic picture of the vertically coupled double-dot molecule; (b) il-
lustration of effective potentials in the adiabatic calculation of electronic states for the
vertical motion (left-hand panel) and for the planar motion (right-hand panel) (see text

for details)
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Let us now include the tunnelling. The Hamiltonian of this simple double-dot molecule

written in the basis of the isospin states takes the form

1
H =Y Eyxie—tlcfa + c¢f ), (6.1)
=0
or, in a matrix form,
E, —t
H = . (6.2)
-t E

Diagonalisation of this simple matrix yields the molecular eigenstates and eigenenergies:
the symmetric (or bonding) orbital |+) = % (|0 + |1)) with energy E, = E, — t, and
the antisymmetric (or antibonding) orbital |—) = % (|0) — |1)) with energy E, = E; +t.
These energy levels are split by 2¢, and the value of this splitting depends on the thickness
of the tunnelling barrier between disks, measured by the QD layer distance D. If D is
large, the tunnelling matrix element ¢ is small, and the two molecular orbitals are nearly
degenerate. On the other hand, if D is decreased, then the splitting between the energies
E. increases.

Let us now present a more realistic calculation for a pair of coupled self-assembled InAs
quantum disks embedded in the GaAs barrier material. The calculation is done within
the effective mass approximation. The single-particle Hamiltonian of the system, written
in cylindrical coordinates and in the effective units of energy and length (Section 2.2)

takes the form:
N 1 0 0 0? 0?
H=-5 (WE*@) — 5zt V), (6.3)

where V (r, z) is the double-disk potential.

In Sections 2.2 and 2.3 I have considered similar Hamiltonians, with the quantum
disk and quantum ring confinement potentials, and I assumed that these potentials have
barriers of infinite height. In the case of the quantum disk this assumption led to the
separation of the Hamiltonian into two operators: one describing the vertical motion, and
the other - the lateral motion of the particle. The two resulting Schrédinger equations

could be then solved analytically.
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But in order to account for the quantum-mechanical coupling in my double-disk system
I need to consider a potential V' (r, z) whose walls are of finite height. This complicates the
analysis in that now the Hamiltonian (6.3) is not separable into two operators, and the
corresponding Schrodinger equation cannot be solved analytically even at zero magnetic
field. To gain insight into the properties of the single-particle spectrum of the double-disk
potential without resorting to numerical treatment, we have proposed a semi-analytical
adiabatic approximation, involving an artificial separation of the motion in z direction
from the motion in the plane. This method is fast and portable, and allows to obtain
energies and wave functions of bound states as a function of the distance between disks
with minimal computational effort even if the disks are not identical (they can vary both
in width and radius).

In the adiabatic approximation the electronic wave functions are sought in the follow-

ing form:

(1,0, 2) = ¢12_7rm0 x g¥(2) % f2(1). (6.4)

The first term in this formula is the angular wave function. Isolating it from the rest of the
total wave function is not an approximation, since the system is rotationally symmetric,
and all electronic orbitals have a well-defined angular momentum m. The approximate
character of the method lies in writing the rest of the wave function ¢ in the form of a
product of the function g dependent on the z coordinate and the function f dependent on
the radial coordinate. The Schrdodinger equation constructed with the Hamiltonian (6.3)

and the wave function as above can be formally separated into two coupled equations:

[—3‘9—; +V(r, z)] ¢’(2) = E,g'(2), (6.5)
H_? (aiai _ m)] () = (B B0, (6.6)

Let us now describe how the two equations were solved.
The equation (6.5) is solved first. It describes the vertical motion of an electron in the

potential V(r, z) for a given value of the radial coordinate r. In Figure 6.1 (a) and (b) I
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show that, depending on the coordinate r, one deals with three different potentials V' (r, 2):
if r < R; I have two wide quantum wells, each of width equal to the height H of the disk
plus the width W of the wetting layer; if Ry < r < Ry I have one wide well, corresponding
to the top disk, and one narrow well, corresponding to the wetting layer, and finally for
r > Ry I have a double-well structure composed of the two wetting layers. I solve for the
motion of the electron in each of these cases using the transfer-matrix method, described
in detail in the paper. For further analysis I retain two lowest energies, F, = E; and
E, = E; and the two corresponding orbitals ¢° and g'. The energy E; is the energy
of the symmetric solution, corresponding to the bonding quantum-molecular orbital, and
the energy F; is the antisymmetric solution, corresponding to the antibonding quantum-
molecular orbital. The corresponding wave functions in each radial region are drawn in the
left-hand panel of Fig. 6.1 (b). Their symmetric and antisymmetric character is apparent
in the first region, where the confining potential is a pair of identical quantum wells. In
the second region the potential is no longer symmetric, and therefore here the bonding
and antibonding orbitals do not have a definite symmetry. This symmetry is restored in
the third region, when I again deal with two identical quantum wells. However here the
wells are narrow, and only the bonding orbital is confined.

The energies E, are different in each region. Out of them I build the effective potential
E,(r) for the lateral motion of the electron, which is illustrated in the right-hand panel
of Fig. 6.1(b). This effective potential is built for each subband v separately and inserted
into the equation (6.6). The radial equation for each subband is solved using the transfer-
matrix method, presented in detail in the paper. The energies E obtained as a result of
the calculation form the single-particle spectrum of the system.

The adiabatic effective-mass approximation requires two parameters as input: the
effective mass m* of the carrier and the depth V4 of the confining potential V' (r, z). They
determine how many bound states there are in the single-particle spectrum, and how

sensitive this spectrum is to the change of the interdisk distance. Thus I need to establish
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the parameters m* and V; for existing double-dot system:s.

In Chapter 1 I have described the techniques of fabrication of stacked InAs disks
embedded in the GaAs barrier material. The depth of confinement V4 in such systems
is determined by the alignment of band edges of the constituent materials. If the bulk
properties of GaAs and InAs is used, the conduction band edge of the dot material is about
1 eV below the conduction band edge of the barrier, and the confinement in the degenerate
heavy- and light-hole subbands of the valence band is of order of 85 meV. However, strain
present in the system modifies these confinement depths dramatically: the confinement
of electrons is in reality of order of 600 meV. Moreover, the hole subbands are split, the
heavy-hole confinement is enhanced, and the light-hole confinement is decreased. The
strain-induced modifications to the confinement potential can be calculated using the
Bir-Pikus formalism [21]. I will show the results of such calculations below.

The effective mass m* of the carriers is also influenced by the strain, but in the
framework of the effective mass approximation we are not able to assess this influence
quantitatively. Therefore the effective mass is treated as the fitting parameter in the
electronic calculations, and it can be adjusted to obtain agreement with more sophisticated
microscopic calculations or with the experiment.

Let us now demonstrate how the presence of strain can be accounted for in the cal-
culations of electronic structure of the system. This discussion is presented briefly in the
paper; here I shall provide some supplementary details [56].

Let us start by calculating the distribution of strain in my system. The strain is due
to the mismatch of lattice constants of the dot and barrier materials; in this InAs/GaAs
system this mismatch is of order of 7%. The degree of strain is quantitatively described

with strain tensor matrix elements

lr) = 5 (ag;(;) 4 61;33(:)) , (6.7)

where u(r) is a vector describing the displacement of a small element of the system at

coordinate r from its equilibrium position. The distribution of these strain elements in
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this system can be calculated using several methods (for reviews see Refs. [56, 99]). I use

the continuous elasticity theory, in which the total elastic energy of the system is written

as
1
E = /dgr {ECH(I‘) (€2, + 62;,63;.«) + Cra(r) (ExuEyy + E2a€rz T Eyyiz)
+ 2Cu(el, +eh.60,) — ago(Eas + €4y + szz)} . (6.8)
Here Ci;, Cis, and Cy4 are the material-specific elastic constants, and ey = (agpt —

Uparrier) | Gparrier 18 the relative difference between the lattice constants a of the dot and
the barrier, respectively. The parameter o = C1; 4+ 2C15 in the dot material, and zero in
the barrier. The calculation of strain distribution involves discretising the system on a
grid of points and minimising the above total elastic energy with respect to displacements
of grid nodes u(r). In the paper (Figure 3 (a), (b), (c), and (d)), I show, respectively,
the distributions of the strain matrix elements e,,, €y, €,,, and the hydrostatic strain
En = Egg + Eyy + €,, On the vertical plane through the centre of both disks assuming
the disk radii Ry = 8 nm, Ry = 8.5 nm, disk thicknesses H = 2 nm and the QD layer
distance D = 4 nm. To supplement this presentation, I show again the distribution of the
hydrostatic strain €, = €44 + €4y + €, and the biaxial strain e = ¢,, — %(sm +&yy) in
Figure 6.2 (a) and (b), respectively. From Fig. 6.2 one can see that as we move along the
symmetry axis through the centre of both disks, the hydrostatic strain remains negative
(compressive) throughout, but the sign of the biaxial strain changes on the dot-barrier
interfaces: it is positive inside the disks and negative in the barrier.

As the unit cell of the crystal is deformed by strain, the bond lengths and angles change,
and this in turn influences the band structure. The attempt to describe this effect within
the -  formalism was undertaken by Bir and Pikus [21] for the diamond-type lattices.

Bahder [12] extended their approach to the zinc-blende binary semiconductor alloys using
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Figure 6.2: Vertical cross section of the spatial variation of hydrostatic (a) and biaxial

(b) strain components through the centre of the double-disk InAs/GaAs system
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the Lowdin perturbation theory and obtained the following eight-band k- p Hamiltonian:

Al 0 —v* 0 —V/3v V2u U —V/2v*
0 QcER V2u V3v* 0 v V2w —Uu
—v V2u —p4+gq —s* r 0 3/2s  —V2¢
i 0 V3v —s —-p—yq 0 r —/2r 1/2s
strain — y
—V/3v* 0 r* 0 -p—gq s* 1/2s*  /2r*
V2u v* 0 r* s —p+q V2¢ 3/2s*
U —V2v* ([3/25* —2r* \J1/25  \V2q  —auep 0
—v2v —u —v/2q 1/2s*  /2r 3/2s 0 —QyE}
(6.9)
where
P = Qy&p,
1
q = b [5zz - 5(5w$ + Syy):| ’
3
r = gb(sw — Eyy) — idegy,
s = —d(egy —igy,),
7
u = ———=PFPyY £,:0;,
/3 ; 79j
1
v = =——F—=Py ) (45 — igy;)0;, (6.10)
/6 ; j i) 0j

with the parameters a., a,, b and d being the material-dependent deformation potentials,
and P, being the imaginary valence-conduction band coupling.

The above formula is written in the notation of Pryor et al. [99]. I can use it to
calculate the local band edge profiles at each point of the grid used previously in the
strain calculations. To this end, however, one can set the parameters u and v to zero, as
I am only interested in the band structure at the I' point of the Brillouin zone. Then,
from Eq. (6.9) one can easily see that the conduction band is not coupled to the valence
band, and that the strain-induced modification of the conduction band edge consists only

of a shift proportional to the hydrostatic strain. The valence band, on the other hand, is
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much more complicated. I will focus here mainly on understanding the diagonal elements
of the matrix Hgyqi,. It can be readily seen that all heavy- and light-hole band edges
are shifted by —p, which is proportional to the hydrostatic strain. Further, the strain
introduces a splitting between the heavy and light hole band edges equal to 2¢g, if the
off-diagonal elements are disregarded. As can be seen from Eq. (6.10), the parameter g
is proportional to the biaxial strain, and depends on the deformation potential b, which
is negative for most semiconductors. That means that if the biaxial strain is negative
(compressive), the heavy hole band edge will lie above the light hole band edge (i.e., from
the viewpoint of the holes, the heavy hole band will have a lower energy). If the biaxial
strain is positive, the situation is reversed.

Now I input the calculated distributions of strain tensor matrix elements into the Bir-
Pikus Hamiltonian (6.9) and, for each point of the structure, diagonalise it numerically to
obtain the strain-modified profiles of band edges. The result of these calculations is shown
in Fig. 6.3. This figure is similar to the Figure 4 from the paper and differs only in the
valence band. Figure 6.3 indicates that the edge of the heavy-hole subband (green line)
crosses the edge of the light-hole subband (blue line) at all dot-barrier interfaces. This is
the correct picture; the assignment of bands in Figure 4 from the paper is erroneous. The
crossing of light-hole and heavy-hole band edges is due to the fact that the biaxial strain
changes sign at the barrier dot interfaces. Since the biaxial strain controls the splitting
between the heavy- and light-hole bands, the change of sign of this strain component leads
to the reversal of bands. This effect has also been reported, e.g., in Ref. [112].

The strain calculations coupled to the Bir-Pikus formalism suggest that the parameter
Vo in my InAs/GaAs system is reduced to 600 meV. Using this confinement depth and
treating the effective mass m* as a fitting parameter, the electronic spectra were fitted to
those obtained with a similar system within the eight-band k - p formalism. As a result
of this fitting, the electronic effective mass was found to be m* = 0.053 my.

With the adiabatic effective mass approximation fully defined and parametrised I
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have calculated the electronic spectra of the vertically coupled double-disk InAs/GaAs
molecule. The spectrum for the double-disk structure with radii of Ry = 8 nm, Ry = 8.5
nm and height of each disk of H = 2 nm is shown in Fig. 6.4. Due to the finite depth of the
confinement potential there are only a few bound electronic states. These states possess
a new characteristic property due to the double-dot potential: they are either symmetric
or antisymmetric in the direction along the axis of rotational symmetry. These symmetry
properties are analogous to those of bonding and antibonding states in diatomic molecules.
The energies of these states change as a function of the distance between disks, as shown in
Fig. 6.4. At large interdisk distances the symmetric and antisymmetric states associated
with the same radial and angular modes (i.e., characterised by the same quantum numbers
n and m) are almost degenerate - one deals essentially with two uncoupled quantum disks.
Small splittings between these levels are due to the fact that the disks are not identical.
Of course, for each vertical symmetry I find the ladder of levels with different quantum
numbers n and m, as I did in the case of the single disk in Section 2.2.

As the two disks are shifted closer together, the tunnelling through the interdisk
barrier causes the symmetric and antisymmetric states to split. This splitting increases
exponentially as the distance between disks is decreased, and can become as large as the
energy gap between two adjacent shells of each disk (which is of order of 30 meV), so that
a symmetric state of, say, the p shell can become degenerate with the antisymmetric state
of the s shell (this situation corresponds to the QD layer distance of 45 A). Thus I deal
with a situation distinctly different from that of the single disk: there, the vertical energy
quantisation introduced the largest energy scale of the system; here this energy scale is
typically the smallest. For all interdisk distances the ladder of lateral modes built on top
of each vertical mode exhibits the shell structure characteristic for the disk confinement
(I covered it in detail in Section 2.2).

In the paper we also discuss the case of nonzero magnetic field, however, unlike in

Section 2.2 for a single quantum disk, the field is now perpendicular to the axis of rota-
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tional symmetry. We have chosen this alignment, since, as I have shown in Section 2.2,
the magnetic field aligned in parallel to the rotational axis has relatively little effect on
the spectrum even at fields of order of 10 T. The second reason is the fact that the mag-
netic field directed perpendicularly to the rotational axis couples the symmetric and the
antisymmetric states, and can lead to anticrossing of shells which originally had opposite
symmetries. This is clearly seen in Figure 7 in the paper, where we show this anticrossing
behaviour as a function of the interdisk distance e.g., for the antisymmetric s shell and
the symmetric p shell (the anticrossing is seen for the distance between disks of 45 A, i.e.,

at the point where at zero magnetic field the two states cross).

6.2 Entangled states of an electron-hole complex in

the QD molecule

Let us now discuss the properties of a single electron-hole pair confined in the double-disk
quantum molecule. I focus on discussing the structure of the states of the electron-hole
pair in the context of entanglement, being a special kind of particle-particle correlations.

The results of this work were published in the paper “Entangled states of electron-hole
complex in a single InAs/GaAs coupled quantum dot molecule”, by Marek Korkusinski,
Pawel Hawrylak, Manfred Bayer, Gerhard Ortner, Alfred Forchel, Simon Fafard, and
Zbigniew Wasilewski, published in Physica E, vol. 13, page 610 (2002). This publication
is an integral part of this thesis and is appended to the presented material.

The notion of entanglement is of particular importance in quantum computing, where
the information is stored in quantum bits. Quantum phenomena must be also used to
process this information, and the simplest object capable of doing so is the quantum logic
gate. The operation of such gate relies on the existence of entangled states of constituent

qubits, i.e., states which cannot be obtained by individual qubit rotation. If I were to
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change the state of one qubit in the entangled system, I would nontrivially affect the state
of the entire system.

In the paper, we have proposed a model of a quantum logic gate composed of two
qubits - an electron and a hole - confined in a vertically coupled pair of disk-shaped self-
assembled quantum dots. Since we deal with an electron-hole pair - an exciton, such a
system can be examined optically - by the photoluminescence experiment. My goal is to
predict the luminescence spectra of the exciton and, in these spectra, find features proving
the existence of entangled states.

In this simple analysis, I return to my original description of the single-particle molec-
ular orbitals in the language of isospin states, and assume that the two quantum disks are
identical. In the absence of the interdisk tunnelling, the particle can be localised either
on the bottom disk (isospin state |0)) or on the top disk (isospin state |1)), and these
states are identified as the states of the qubit. Tunnelling through the barrier between
disks leads to mixing of isospin states, i.e., rotation of the qubit. One observes the forma-
tion of molecular orbitals |+) = % (]0) £ 1)) and their energies Ey are split by 2¢. The
tunnelling matrix element ¢ is the only free parameter; its value for each interdot distance
can be easily established from the single-particle spectra calculated using the adiabatic
effective-mass approximation.

Let us now introduce the second qubit - the hole - into the system, and let us assume
for the moment that the two carriers do not interact. In the absence of the tunnelling, the
wave function of the pair can be written as a product of the isospin states of each qubit
separately. There are four possible configurations: |0)¢|0)p, |1)e|1)n, [0)e|1)n, and [1)¢|0)p.
Upon the inclusion of tunnelling the qubits will rotate independently, and now the exact
wave functions of the system can be written as [+)e[+)s = 3 (|0)e + [1)e) (|0} + [1)1),
and analogously |—)e|—)n, [+)e|—)n and |=)¢|+)n. Thus, the total wave function of the
system can be written as a simple product of the electron wave function and the hole

wave function, which means that the qubits are not entangled.
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Inclusion of the electron-hole Coulomb interaction changes this picture: now the qubits
are no longer independent. The Hamiltonian of the system of two interacting qubits in
the basis of the quantum-molecular orbitals takes the form:
H =Y Eicici+ Y Ehihi — > (ij|VIkl)c] hf hyay, (6.11)
i i ijkl
where the index 7 = + or —, similarly j, k, and [, and the operators h; (h;) create (anni-
hilate) a hole on the orbital ¢. I construct the basis set out of configurations created by dis-
tributing the electron and hole on the molecular orbitals: {|+)e|+)n, |—)el—=)ns [+)el=)ns [=)el+)n-}-
In a PL experiment only the two first states, i.e., |[+)¢|+)n and |—).|—), can be addressed
optically due to their symmetry; the two remaining states with mixed symmetry are dark.

In this basis the Hamiltonian matrix takes the form

Eip+ Vg Vig— 0 0
V__ E__+V____ 0 0
H= i (6.12)
0 0 B+ Voo Vo4

(details of calculations of the Coulomb matrix elements are given in the paper). This
matrix has a block-diagonal form, because the Coulomb interaction mixes only states
with the same overall symmetry. In particular, the Hamiltonian matrix does not mix the
optically active states with the dark states, and in what follows I will only focus on the

top left-hand segment of the matrix,

H, = Eiv + Vs Vig—- ' (6.13)
| Z—— E _+V_ ___
Upon diagonalisation of this simple matrix I obtain the optically active eigenstates of the

system of two interacting qubits. If recast in terms of the isospin states, they can be

written as

@) = 01([0)e]0)n + [L)e[1)n) + Br([0)e])n + [1)e[O)n), (6.14)

0) = 4(|0)e|0)n + [1)el1)n) + Ba(l0)e[1)n + [1)e|O)n)- (6.15)
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Thus, the states of the pair of interacting qubits cannot be written as simple products
of the states of individual qubits, and so the Coulomb electron-hole interaction leads to
entanglement of my qubits. The energies corresponding to these two wave functions are
composed of orbital and interaction terms. Without interactions the splitting between
them would be equal to £, — E__, and, for large interdisk distances D, would approach
zero. However, due to the off-diagonal matrix element V., __, which changes only weakly
with the interdisk distance, the energies of the two optically active states will be split
even for large D. This splitting is thus the signature of the entangled states of my qubits.
Since both eigenstates, |a) and |b), are optically active, the splitting should be visible in
the photoluminescence experiment.

The PL experiment on the InAs/GaAs quantum-disk molecules with varying interdisk
distance was performed by the group of Alfred Forchel and Manfred Bayer at Wiirzburg
University. The author of this Thesis, not being involved in the measurements, refers the
reader interested in the experimental details to the attached paper. Here let us only state
that the splitting of the PL lines due to the recombination of excitons on states |a) and
|b) is indeed observed even for the interdisk separations as large as 8 nm. To the best of
my knowledge, this is the first successful observation of the PL spectra of an entangled

electron-hole pair confined in a double-disk quantum-dot molecule.



