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Abstract

In this Thesis, I present a theoretical study of correlation effects in strongly interacting
electronic and electron-hole systems confined in semiconductor quantum dots. 1 focus on
three systems: N electrons in a two-dimensional parabolic confinement in the absence and
in the presence of a magnetic field, an electron-hole pair confined in a vertically coupled
double-quantum-dot molecule, and a charged exciton in a quantum-ring confinement in a
magnetic field.

To analyse these systems I use the exact diagonalisation technique in the effective-
mass approximation. This approach consists of three steps: construction of a basis set
of particle configurations, writing the Hamiltonian in this basis in a matrix form, and
numerical diagonalisation of this matrix. Each of these steps is described in detail in the
text.

Using the exact diagonalisation technique I identify the properties of the systems
due to correlations and formulate predictions of how these properties could be observed
experimentally. I confront these predictions with results of recent photoluminescence and
transport measurements.

First I treat the system of N electrons in a parabolic confinement in the absence of
magnetic field and demonstrate how its properties, such as magnetic moments, can be
engineered as a function of the system parameters and the size of the Hilbert space.

Next I analyse the evolution of the ground state of this system as a function of the

magnetic field. In the phase diagram of the system I identify the spin-singlet v = 2
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phase and discuss how correlations influence its phase boundaries both as a function of
the magnetic field and the number of electrons.

I also demonstrate that in higher magnetic fields electronic correlations lead to the
appearance of spin-depolarised phases, whose stability regions separate the weakly corre-
lated phases with higher spin. Further on, I consider electron-hole systems. I show that
the Coulomb interaction leads to entanglement of the states of an electron and a hole
confined in a pair of vertically coupled quantum dots.

Finally I consider the system of two electrons and one hole (a negatively charged
exciton) confined in a quantum ring and in the presence of the magnetic field. I show
that the energy of a single electron in the ring geometry exhibits the Aharonov-Bohm
oscillations as a function of the magnetic field. In the case of the negatively charged
exciton these oscillations are nearly absent due to correlations among particles, and as
a result the photoluminescence spectra of the charged complex are dominated by the
energy of the final-state electron. The Aharonov-Bohm oscillations of the energy of a

single electron are thus observed directly in the optical spectra.



Sommaire

Une étude théorique des corrélations électroniques dans des points quantiques semi-
conducteurs ou les électrons et les trous interagissent fortement entre eux est présentée.
Trois systemes en particulier sont considérés: N électrons confinés dans un potentiel
parabolique bi-dimensionnel en absence et en présence d’'un champ magnétique, une paire
électron-trou isolée dans deux points quantiques couplés verticalement, et un complexe
excitonique formé dans un anneau quantique soumis a un champ magnétique externe.

Une technique de diagonalisation exacte dans ’approximation de la masse effective est
employée pour analyser ces systéemes. Cette approche se divise en trois étapes : la con-
struction d’une base d’états dans I'espace des configurations possibles pour les particules,
I’écriture en forme matricielle du Hamiltonien dans la base construite, et la diagonalisa-
tion numérique de la matrice. Chacune de ces étapes est expliquée en détails dans cette
these.

En utilisant cette technique, nous étudions les effets des corrélations sur les propriétés
électroniques des systemes en question et formulons des prédictions théoriques permettant
I’observation expérimentale de ces effets. Ces prédictions sont confrontées a des résultats
récents obtenus par mesures optique et de transport électrique dans ces systémes.

On démontre tout d’abord comment les propriétés électroniques de N électrons con-
finés en deux dimensions dans un potentiel parabolique, comme par exemple le moment
magnétique, peuvent étre ajustées, en absence de champ magnétique, en fonction des

parametres du systeme et de la taille de ’espace d’Hilbert.

il
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On analyse ensuite I’évolution en champ magnétique de 1'état fondamental. Une
phase de spin singulet v = 2 est identifiée dans le diagramme de phase et I'influence
des corrélations sur cette phase est étudiée en fonction du champ magnétique et du nom-
bre d’électrons. On démontre aussi qu’a plus fort champ magnétique, les corrélations
électroniques induisent de nouvelles phases dépolarisées en spin dont les régions de sta-
bilité séparent les phases polarisées mais moins corrélées.

On montre, en second lieu, comment l'interaction de Coulomb enchevétre ’état d’un
électron avec celui d’'un trou, tous deux confinés dans une paire de points quantiques
couplés verticalement.

Finalement, on considere un complexe excitonique composé de deux électrons et
d’un trou (exciton chargé) formé dans un anneau quantique en présence d’un champ
magnétique. On montre que les oscillations d’Aharanov-Bohm, présentes dans le spectre
a une particule, disparaissent dans celui de I’exciton chargé. Cet effet, dii aux corrélations
entre les trois particules, implique que le spectre de photoluminescence de I’exciton chargé
est dominé par ’énergie de I’électron non apparié. Les oscillations d’Aharanov-Bohm de

cet électron peuvent étre alors observées optiquement.
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Plan of the Thesis

and Statement of Originality

In this Thesis I present a theoretical study of correlation effects in strongly interact-
ing electronic and electron-hole systems confined in semiconductor nanostructures. The
problem of interest can be posed rigorously by writing the Hamiltonian of a system of N

particles confined in a potential V(x,y, z) of a nanostructure:

(b 2a) i) + 3 )

7 Elri—r; il

A:ﬁ’:l%ln

Here, p;, r;, ¢;, and m; are respectively: the momentum and position operators and the
charge and effective mass of the i-th particle, A is the magnetic vector potential, c is the
speed of light, and ¢ is the dielectric constant of the material.

The first term in this Hamiltonian describes the problem of a single particle moving
in the potential well V' of the nanostructure in the presence of an external magnetic field.
This problem is at most three-dimensional, and in most cases it can be solved exactly,
using analytical or numerical methods.

What makes the Hamiltonian difficult to analyse is the second term, which describes
the Coulomb interactions. Now the particles are no longer independent and one needs to
build the basis of the Hilbert space for the problem out of configurations of all NV particles.
The size of this basis grows factorially with the number N. This makes the problem of

interacting particles too difficult to solve exactly on present-day computers.
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Approximate methods have been developed to approach the problem. For example, in
mean-fields treatments, such as the Hartree-Fock theory, the wave function of the system

is postulated in the form of a single Slater determinant:
¢1(r1)Xo1(r1) oo D1(rn)Xo1(rn)
‘Il(rlO'l,...,rNO'N) == ) (2)

on(r1)Xon(r1) .. On(rn)Xon(TN)

built out of effective single-particle orbital and spin wave functions ¢;(r)xsi(r). The total
energy is then formulated as a functional of these effective orbitals, and then minimised
self-consistently by adjusting these orbitals one by one until convergence. This means in
practice that the system is modelled on a single-particle level, but now each particle moves
not only in the potential V' (z,y, z) of the nanostructure, but also in the mean effective
field created by all other particles.

Note that in this approach, allowing to approximate only the ground-state energy
of the system, each particle interacts with all other particles not as with point-like ob-
jects, but rather through a smeared-out effective potential, which accounts for the total
Coulomb direct and exchange interactions. The mean-field theories usually work well
in weakly interacting systems, i.e., systems, where the first term of the Hamiltonian (1)
plays the dominant role, and the second term is just a perturbation. In such systems the
ground state can indeed be well approximated by a single Slater determinant. However,
the confinement V' (z,y, z) of semiconductor nanostructures can be chosen in such a way
that the characteristic energy scale of the single-particle problem is the same as that of
interactions, or even smaller. To show this, let us examine the two-dimensional parabolic

confinement potential, used frequently in this work:

1
Vir) = mudr® 3)

with the characteristic frequency wy. I will prove later on that the energy gaps between

the levels of its single-particle spectrum are of order of hwg, while interactions scale as
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2

=4/ Qhﬂ;\/hwo (R is the Dirac’s constant, ¢ is the dielectric constant of the material, and m*

and e are the electronic effective mass and charge, respectively). Thus the ratio A of the

e e s . . . . . . e2 2m* 1
characteristic interaction and single-particle energies is A = /<5 N

larger than 1 for wy small enough (for instance, in GaAs, m* = 0.067 my and ¢ = 12.4,

and can be made

and A > 1 for hwg < 23.7 meV, a value easily obtained experimentally). The properties of
these strongly interacting systems cannot be fully understood in terms of quasiparticles
(particles dressed in interactions), because in this regime the particles are correlated and
manifest collective behaviour. To account for these phenomena, the wave function should
also contain terms dependent explicitely on differences between electronic coordinates,
which is not fully included in the mean-field treatment. This is achieved by writing the
eigenstates (ground and excited) of the Hamiltonian (1) not as a single Slater determinant,
but rather as linear combinations of many such objects. In order to establish what these
linear combinations should be, one needs to move to more sophisticated, nonperturbative
approaches. The goal of this Thesis is to use such approaches to examine correlation
effects in these systems, and contrast them with those due to the Coulomb direct and
exchange terms.

I choose to study the correlation effects in semiconductor nanostructures, because such
systems can be realised experimentally, offering a possibility of direct verification of my
findings. The nanostructures I focus on in this context are quantum dots and quantum
rings. I start this work with a general introduction to these zero-dimensional structures,
from fundamental concepts to specific realisations (Chapter 1). In this Chapter I also
present a review of the available literature treating the subject of many interacting par-
ticles confined in them. As I have pointed out, proper treatment of correlations in these
systems cannot be accomplished within the mean-field approaches, but requires sophis-
ticated methods and tools of mathematical and computational physics. My presentation
of these tools starts in Chapter 2 with a description of single-particle properties of typ-

ical nanostructures. Having done that, in Chapter 3 I formulate the problem of many
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interacting particles confined in nanostructures and describe the exact diagonalisation
method, capable of capturing the physics of such systems in an exact (nonperturbative)
manner. This level of complexity of my theories is necessary to account for the correlation
effects in the system, although I acknowledge the existence of other methods, capable of
accomplishing this task in an approximate manner. Only then do I proceed to the main
body of my work. In Chapter 4 I analyse the properties of systems of many electrons
confined in parabolic quantum dots and I show that properties of such systems, such as
their magnetic moments, can be engineered. This engineering is accomplished by control-
ling the Hilbert space of the many-particle system, which, in turn, is achieved by tuning
the single-particle properties of the dots. In Chapter 5 I analyse many-electron systems
under parabolic confinement and in an external magnetic field, and I show how the elec-
tronic correlations modify the evolution of these systems as a function of the number of
electrons, the magnetic field, the Zeeman energy, etc. Then I move on to electron-hole
systems, and in Chapter 6 I consider a single electron-hole pair confined in the vertically
coupled double-quantum-dot molecule. I show that the Coulomb interactions of the car-
riers lead to the appearance of a special kind of correlation, known as entanglement. I
continue the analysis of electron-hole systems in Chapter 7, where I demonstrate how
correlations can lead to suppression of Aharonov-Bohm oscillations of an exciton and a
negatively charged exciton confined in a quantum ring. I conclude the thesis with a brief
summary in Chapter 8.

All the calculations presented in the text were carried out under the supervision of
Dr. Pawel Hawrylak, the Group Leader of the Quantum Theory Group at the Institute
for Microstructural Sciences, National Research Council in Ottawa. Since many of the
methods are numerical in nature, this Group adopted a specific procedure to prove their
correctness: apart from the cases where the result was obvious, it had to be reproduced
independently by two or more people. Note the word “independently”: in this case

it means that each of the persons involved had to parametrise the model in their own
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way, write their own computer programs, and prepare their own presentation of results.
Therefore I feel that I can, in good faith, claim the results presented herein as my own,
however not without crediting the coworkers and colleagues, who have helped to put this

research on solid scientific ground. They are:

e Dr. Pawel Hawrylak, of the Institute of Microstructural Sciences, National Research
Council of Canada, Ottawa - the Group Leader, who directed all of our research,

ultimately supervising and reproducing all the results;

e Dr. Andreas Wensauer, formerly at the Physics Department, University of Regens-
burg, Germany, now at Framatome Inc., Erlangen, Germany, a visitor at IMS, and a
co-developer of the exact diagonalisation tools used to analyze the spectra of lateral

gated quantum dot devices;

e Dr. Jordan Kyriakidis, formerly a Research Associate at IMS, now an Assistant
Professor at the Physics Department, Dalhousie University, Halifax, NS, who was

involved in analyzing the electronic spectra of deformed lateral dots;

e Dr. Shun-Jen Cheng, formerly a Research Associate at IMS, now an Assistant
Professor at National Chiao Tung University in Taiwan, who worked on the excitonic

spectra of deformed self-assembled dots and dots in high magnetic fields;

e Dr. Weidong Sheng, a Research Associate at IMS, who has worked on microscopic

models of electron and hole states in self-assembled quantum dots;

e Juan Ignacio Climente Plasencia, now a Ph.D. Student at the Physics Department,
Universitat Jaume I, Castelld, Valencia, Spain, who worked on double-hole spectra

of self-assembled dots.

I am indebted to all these coworkers and colleagues.
Most of our original results have already been published in refereed journals (see

Appendix A for the full list of papers), which prompted me to build this Thesis as a
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collection of articles, rather than write a separate monograph. Out of the full list I
have chosen eight papers, which, in my opinion, present a consistent line of research into

correlations in nanostructured materials. These papers are:

1. A. Wensauer, M. Korkusinski, and P. Hawrylak, “Configuration interaction method

for Fock-Darwin states”, Solid State Commun. 130, 115 (2004);

2. M. Korkusinski, W.Sheng, and P. Hawrylak, “Designing quantum systems in self-

assembled quantum dots”, Phys. Stat. Sol. (b) 238, 246 (2003);

3. A. Wensauer, M. Korkusinski, and P. Hawrylak, “Theory of spin-singlet filling factor

v = 2 quantum Hall droplet”, Phys. Rev. B 67, 035325 (2003);

4. M. Korkusinski, P. Hawrylak, M. Ciorga, M. Pioro-Ladriere, and A.S. Sachrajda,
“Pairing of spin excitations in lateral quantum dots”, submitted for publication in

Phys. Rev. Lett.;

5. M. Korkusinski and P. Hawrylak, “Electronic structure of vertically stacked self-

assembled quantum disks”, Phys. Rev. B 63, 195311 (2001);

6. M. Korkusinski, P. Hawrylak, M. Bayer, G. Ortner, A. Forchel, S. Fafard, and
7. Wasilewski, “Entangled states of electron-hole complex in a single InAs/GaAs

coupled quantum dot molecule”, Physica E 13, 610 (2002);

7. M. Korkusinski, P. Hawrylak, and M. Bayer, “Negatively charged exciton on a

quantum ring”, Phys. Stat. Sol. (b) 234, 274 (2002);

8. M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel,
“Optical detection of the Aharonov-Bohm effect on a charged particle in a nanoscale

quantum ring”, Phys. Rev. Lett. 90, 186801 (2003).

As can be seen from this list, all these papers resulted from joint effort. The first four of

them are strictly theoretical in nature, and, in the best possible faith, I declare that I have
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contributed to their entire content within the collaborative procedure outlined above, with
only one exception: the spin density functional calculations presented in the third paper
are due to Dr. Andreas Wensauer, and I have not reproduced them on my own. As for the
last four papers, they cover both theoretical and experimental aspects of the research, but
the emphasis is put on a detailed presentation of the theory, and experimental results are
only invoked to confirm it. Being a theorist, I have not contributed to the experimental
aspects of these publications, but I declare my full involvement in the theories presented
there - again, within the collaborative procedure described earlier.

Searches of available literature have revealed a number of publications tackling prob-
lems similar to those presented in this Thesis, and using similar methods; I review some of
these publications in order to put our results in the appropriate perspective. I find, how-
ever, that in each of these cases my work is sufficiently distinct to be considered unique

and original.



