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Abstract

In this Thesis, I present a theoretical study of correlation effects in strongly interacting
electronic and electron-hole systems confined in semiconductor quantum dots. 1 focus on
three systems: N electrons in a two-dimensional parabolic confinement in the absence and
in the presence of a magnetic field, an electron-hole pair confined in a vertically coupled
double-quantum-dot molecule, and a charged exciton in a quantum-ring confinement in a
magnetic field.

To analyse these systems I use the exact diagonalisation technique in the effective-
mass approximation. This approach consists of three steps: construction of a basis set
of particle configurations, writing the Hamiltonian in this basis in a matrix form, and
numerical diagonalisation of this matrix. Each of these steps is described in detail in the
text.

Using the exact diagonalisation technique I identify the properties of the systems
due to correlations and formulate predictions of how these properties could be observed
experimentally. I confront these predictions with results of recent photoluminescence and
transport measurements.

First I treat the system of N electrons in a parabolic confinement in the absence of
magnetic field and demonstrate how its properties, such as magnetic moments, can be
engineered as a function of the system parameters and the size of the Hilbert space.

Next I analyse the evolution of the ground state of this system as a function of the

magnetic field. In the phase diagram of the system I identify the spin-singlet v = 2
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phase and discuss how correlations influence its phase boundaries both as a function of
the magnetic field and the number of electrons.

I also demonstrate that in higher magnetic fields electronic correlations lead to the
appearance of spin-depolarised phases, whose stability regions separate the weakly corre-
lated phases with higher spin. Further on, I consider electron-hole systems. I show that
the Coulomb interaction leads to entanglement of the states of an electron and a hole
confined in a pair of vertically coupled quantum dots.

Finally I consider the system of two electrons and one hole (a negatively charged
exciton) confined in a quantum ring and in the presence of the magnetic field. I show
that the energy of a single electron in the ring geometry exhibits the Aharonov-Bohm
oscillations as a function of the magnetic field. In the case of the negatively charged
exciton these oscillations are nearly absent due to correlations among particles, and as
a result the photoluminescence spectra of the charged complex are dominated by the
energy of the final-state electron. The Aharonov-Bohm oscillations of the energy of a

single electron are thus observed directly in the optical spectra.



Sommaire

Une étude théorique des corrélations électroniques dans des points quantiques semi-
conducteurs ou les électrons et les trous interagissent fortement entre eux est présentée.
Trois systemes en particulier sont considérés: N électrons confinés dans un potentiel
parabolique bi-dimensionnel en absence et en présence d’'un champ magnétique, une paire
électron-trou isolée dans deux points quantiques couplés verticalement, et un complexe
excitonique formé dans un anneau quantique soumis a un champ magnétique externe.

Une technique de diagonalisation exacte dans ’approximation de la masse effective est
employée pour analyser ces systéemes. Cette approche se divise en trois étapes : la con-
struction d’une base d’états dans I'espace des configurations possibles pour les particules,
I’écriture en forme matricielle du Hamiltonien dans la base construite, et la diagonalisa-
tion numérique de la matrice. Chacune de ces étapes est expliquée en détails dans cette
these.

En utilisant cette technique, nous étudions les effets des corrélations sur les propriétés
électroniques des systemes en question et formulons des prédictions théoriques permettant
I’observation expérimentale de ces effets. Ces prédictions sont confrontées a des résultats
récents obtenus par mesures optique et de transport électrique dans ces systémes.

On démontre tout d’abord comment les propriétés électroniques de N électrons con-
finés en deux dimensions dans un potentiel parabolique, comme par exemple le moment
magnétique, peuvent étre ajustées, en absence de champ magnétique, en fonction des

parametres du systeme et de la taille de ’espace d’Hilbert.

il
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On analyse ensuite I’évolution en champ magnétique de 1'état fondamental. Une
phase de spin singulet v = 2 est identifiée dans le diagramme de phase et I'influence
des corrélations sur cette phase est étudiée en fonction du champ magnétique et du nom-
bre d’électrons. On démontre aussi qu’a plus fort champ magnétique, les corrélations
électroniques induisent de nouvelles phases dépolarisées en spin dont les régions de sta-
bilité séparent les phases polarisées mais moins corrélées.

On montre, en second lieu, comment l'interaction de Coulomb enchevétre ’état d’un
électron avec celui d’'un trou, tous deux confinés dans une paire de points quantiques
couplés verticalement.

Finalement, on considere un complexe excitonique composé de deux électrons et
d’un trou (exciton chargé) formé dans un anneau quantique en présence d’un champ
magnétique. On montre que les oscillations d’Aharanov-Bohm, présentes dans le spectre
a une particule, disparaissent dans celui de I’exciton chargé. Cet effet, dii aux corrélations
entre les trois particules, implique que le spectre de photoluminescence de I’exciton chargé
est dominé par ’énergie de I’électron non apparié. Les oscillations d’Aharanov-Bohm de

cet électron peuvent étre alors observées optiquement.
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Plan of the Thesis

and Statement of Originality

In this Thesis I present a theoretical study of correlation effects in strongly interact-
ing electronic and electron-hole systems confined in semiconductor nanostructures. The
problem of interest can be posed rigorously by writing the Hamiltonian of a system of N

particles confined in a potential V(x,y, z) of a nanostructure:

(b 2a) i) + 3 )

7 Elri—r; il

A:ﬁ’:l%ln

Here, p;, r;, ¢;, and m; are respectively: the momentum and position operators and the
charge and effective mass of the i-th particle, A is the magnetic vector potential, c is the
speed of light, and ¢ is the dielectric constant of the material.

The first term in this Hamiltonian describes the problem of a single particle moving
in the potential well V' of the nanostructure in the presence of an external magnetic field.
This problem is at most three-dimensional, and in most cases it can be solved exactly,
using analytical or numerical methods.

What makes the Hamiltonian difficult to analyse is the second term, which describes
the Coulomb interactions. Now the particles are no longer independent and one needs to
build the basis of the Hilbert space for the problem out of configurations of all NV particles.
The size of this basis grows factorially with the number N. This makes the problem of

interacting particles too difficult to solve exactly on present-day computers.
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Approximate methods have been developed to approach the problem. For example, in
mean-fields treatments, such as the Hartree-Fock theory, the wave function of the system

is postulated in the form of a single Slater determinant:
¢1(r1)Xo1(r1) oo D1(rn)Xo1(rn)
‘Il(rlO'l,...,rNO'N) == ) (2)

on(r1)Xon(r1) .. On(rn)Xon(TN)

built out of effective single-particle orbital and spin wave functions ¢;(r)xsi(r). The total
energy is then formulated as a functional of these effective orbitals, and then minimised
self-consistently by adjusting these orbitals one by one until convergence. This means in
practice that the system is modelled on a single-particle level, but now each particle moves
not only in the potential V' (z,y, z) of the nanostructure, but also in the mean effective
field created by all other particles.

Note that in this approach, allowing to approximate only the ground-state energy
of the system, each particle interacts with all other particles not as with point-like ob-
jects, but rather through a smeared-out effective potential, which accounts for the total
Coulomb direct and exchange interactions. The mean-field theories usually work well
in weakly interacting systems, i.e., systems, where the first term of the Hamiltonian (1)
plays the dominant role, and the second term is just a perturbation. In such systems the
ground state can indeed be well approximated by a single Slater determinant. However,
the confinement V' (z,y, z) of semiconductor nanostructures can be chosen in such a way
that the characteristic energy scale of the single-particle problem is the same as that of
interactions, or even smaller. To show this, let us examine the two-dimensional parabolic

confinement potential, used frequently in this work:

1
Vir) = mudr® 3)

with the characteristic frequency wy. I will prove later on that the energy gaps between

the levels of its single-particle spectrum are of order of hwg, while interactions scale as
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2

=4/ Qhﬂ;\/hwo (R is the Dirac’s constant, ¢ is the dielectric constant of the material, and m*

and e are the electronic effective mass and charge, respectively). Thus the ratio A of the

e e s . . . . . . e2 2m* 1
characteristic interaction and single-particle energies is A = /<5 N

larger than 1 for wy small enough (for instance, in GaAs, m* = 0.067 my and ¢ = 12.4,

and can be made

and A > 1 for hwg < 23.7 meV, a value easily obtained experimentally). The properties of
these strongly interacting systems cannot be fully understood in terms of quasiparticles
(particles dressed in interactions), because in this regime the particles are correlated and
manifest collective behaviour. To account for these phenomena, the wave function should
also contain terms dependent explicitely on differences between electronic coordinates,
which is not fully included in the mean-field treatment. This is achieved by writing the
eigenstates (ground and excited) of the Hamiltonian (1) not as a single Slater determinant,
but rather as linear combinations of many such objects. In order to establish what these
linear combinations should be, one needs to move to more sophisticated, nonperturbative
approaches. The goal of this Thesis is to use such approaches to examine correlation
effects in these systems, and contrast them with those due to the Coulomb direct and
exchange terms.

I choose to study the correlation effects in semiconductor nanostructures, because such
systems can be realised experimentally, offering a possibility of direct verification of my
findings. The nanostructures I focus on in this context are quantum dots and quantum
rings. I start this work with a general introduction to these zero-dimensional structures,
from fundamental concepts to specific realisations (Chapter 1). In this Chapter I also
present a review of the available literature treating the subject of many interacting par-
ticles confined in them. As I have pointed out, proper treatment of correlations in these
systems cannot be accomplished within the mean-field approaches, but requires sophis-
ticated methods and tools of mathematical and computational physics. My presentation
of these tools starts in Chapter 2 with a description of single-particle properties of typ-

ical nanostructures. Having done that, in Chapter 3 I formulate the problem of many
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interacting particles confined in nanostructures and describe the exact diagonalisation
method, capable of capturing the physics of such systems in an exact (nonperturbative)
manner. This level of complexity of my theories is necessary to account for the correlation
effects in the system, although I acknowledge the existence of other methods, capable of
accomplishing this task in an approximate manner. Only then do I proceed to the main
body of my work. In Chapter 4 I analyse the properties of systems of many electrons
confined in parabolic quantum dots and I show that properties of such systems, such as
their magnetic moments, can be engineered. This engineering is accomplished by control-
ling the Hilbert space of the many-particle system, which, in turn, is achieved by tuning
the single-particle properties of the dots. In Chapter 5 I analyse many-electron systems
under parabolic confinement and in an external magnetic field, and I show how the elec-
tronic correlations modify the evolution of these systems as a function of the number of
electrons, the magnetic field, the Zeeman energy, etc. Then I move on to electron-hole
systems, and in Chapter 6 I consider a single electron-hole pair confined in the vertically
coupled double-quantum-dot molecule. I show that the Coulomb interactions of the car-
riers lead to the appearance of a special kind of correlation, known as entanglement. I
continue the analysis of electron-hole systems in Chapter 7, where I demonstrate how
correlations can lead to suppression of Aharonov-Bohm oscillations of an exciton and a
negatively charged exciton confined in a quantum ring. I conclude the thesis with a brief
summary in Chapter 8.

All the calculations presented in the text were carried out under the supervision of
Dr. Pawel Hawrylak, the Group Leader of the Quantum Theory Group at the Institute
for Microstructural Sciences, National Research Council in Ottawa. Since many of the
methods are numerical in nature, this Group adopted a specific procedure to prove their
correctness: apart from the cases where the result was obvious, it had to be reproduced
independently by two or more people. Note the word “independently”: in this case

it means that each of the persons involved had to parametrise the model in their own



PLAN OF THE THESIS AND STATEMENT OF ORIGINALITY )

way, write their own computer programs, and prepare their own presentation of results.
Therefore I feel that I can, in good faith, claim the results presented herein as my own,
however not without crediting the coworkers and colleagues, who have helped to put this

research on solid scientific ground. They are:

e Dr. Pawel Hawrylak, of the Institute of Microstructural Sciences, National Research
Council of Canada, Ottawa - the Group Leader, who directed all of our research,

ultimately supervising and reproducing all the results;

e Dr. Andreas Wensauer, formerly at the Physics Department, University of Regens-
burg, Germany, now at Framatome Inc., Erlangen, Germany, a visitor at IMS, and a
co-developer of the exact diagonalisation tools used to analyze the spectra of lateral

gated quantum dot devices;

e Dr. Jordan Kyriakidis, formerly a Research Associate at IMS, now an Assistant
Professor at the Physics Department, Dalhousie University, Halifax, NS, who was

involved in analyzing the electronic spectra of deformed lateral dots;

e Dr. Shun-Jen Cheng, formerly a Research Associate at IMS, now an Assistant
Professor at National Chiao Tung University in Taiwan, who worked on the excitonic

spectra of deformed self-assembled dots and dots in high magnetic fields;

e Dr. Weidong Sheng, a Research Associate at IMS, who has worked on microscopic

models of electron and hole states in self-assembled quantum dots;

e Juan Ignacio Climente Plasencia, now a Ph.D. Student at the Physics Department,
Universitat Jaume I, Castelld, Valencia, Spain, who worked on double-hole spectra

of self-assembled dots.

I am indebted to all these coworkers and colleagues.
Most of our original results have already been published in refereed journals (see

Appendix A for the full list of papers), which prompted me to build this Thesis as a
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collection of articles, rather than write a separate monograph. Out of the full list I
have chosen eight papers, which, in my opinion, present a consistent line of research into

correlations in nanostructured materials. These papers are:

1. A. Wensauer, M. Korkusinski, and P. Hawrylak, “Configuration interaction method

for Fock-Darwin states”, Solid State Commun. 130, 115 (2004);

2. M. Korkusinski, W.Sheng, and P. Hawrylak, “Designing quantum systems in self-

assembled quantum dots”, Phys. Stat. Sol. (b) 238, 246 (2003);

3. A. Wensauer, M. Korkusinski, and P. Hawrylak, “Theory of spin-singlet filling factor

v = 2 quantum Hall droplet”, Phys. Rev. B 67, 035325 (2003);

4. M. Korkusinski, P. Hawrylak, M. Ciorga, M. Pioro-Ladriere, and A.S. Sachrajda,
“Pairing of spin excitations in lateral quantum dots”, submitted for publication in

Phys. Rev. Lett.;

5. M. Korkusinski and P. Hawrylak, “Electronic structure of vertically stacked self-

assembled quantum disks”, Phys. Rev. B 63, 195311 (2001);

6. M. Korkusinski, P. Hawrylak, M. Bayer, G. Ortner, A. Forchel, S. Fafard, and
7. Wasilewski, “Entangled states of electron-hole complex in a single InAs/GaAs

coupled quantum dot molecule”, Physica E 13, 610 (2002);

7. M. Korkusinski, P. Hawrylak, and M. Bayer, “Negatively charged exciton on a

quantum ring”, Phys. Stat. Sol. (b) 234, 274 (2002);

8. M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel,
“Optical detection of the Aharonov-Bohm effect on a charged particle in a nanoscale

quantum ring”, Phys. Rev. Lett. 90, 186801 (2003).

As can be seen from this list, all these papers resulted from joint effort. The first four of

them are strictly theoretical in nature, and, in the best possible faith, I declare that I have
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contributed to their entire content within the collaborative procedure outlined above, with
only one exception: the spin density functional calculations presented in the third paper
are due to Dr. Andreas Wensauer, and I have not reproduced them on my own. As for the
last four papers, they cover both theoretical and experimental aspects of the research, but
the emphasis is put on a detailed presentation of the theory, and experimental results are
only invoked to confirm it. Being a theorist, I have not contributed to the experimental
aspects of these publications, but I declare my full involvement in the theories presented
there - again, within the collaborative procedure described earlier.

Searches of available literature have revealed a number of publications tackling prob-
lems similar to those presented in this Thesis, and using similar methods; I review some of
these publications in order to put our results in the appropriate perspective. I find, how-
ever, that in each of these cases my work is sufficiently distinct to be considered unique

and original.



Chapter 1

Introduction

1.1 Elementary properties of quantum dots

Quantum dots (QDs) can be defined as solid-state structures capable of confining electrons
and holes in all spatial directions. They are frequently modelled as three-dimensional
wells of confining potential, or “quantum boxes” (usually with walls of finite height); the
confinement is usually produced electrostatically or by appropriate material engineering.
Typical dimensions of QDs range from a few to several hundreds of nanometres, which
results in distinct quantisation of the single-particle energy spectrum of trapped carriers:
the energy gaps between levels are typically of the order of several microelectronvolts to
several tens of millielectronvolts (meV). At this point one frequently draws an analogy
between the QDs and atoms, in which electrons are confined by the positive potential
of the nucleus, and their energy levels form well-separated shells. This analogy is quite
useful, and QDs are often called “artificial atoms” [8, 62]. Indeed, as mentioned before, in
QDs, as in atoms, the wave functions of charge carriers are confined in the vicinity of the
dot centre, and the corresponding eigenenergies form a discrete spectrum. If the QD is of
a sufficiently high symmetry, these levels can form shells with increasing degeneracy. Also,

it is possible to obtain dots with well-controllable number of confined carriers, from one to
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hundreds, and indeed reproduce a Mendeleev periodic table of “QD elements” [32, 121].
The carriers can relax or be promoted from one level to another subject to selection rules
similar to those found in atoms. There are, however, notable differences between the
artificial atoms and their natural counterparts. First of all, quantum dots can confine
holes as well as electrons, while the positive potential of atomic nucleus can only confine
the negative carriers. Further, the lateral confinement in QDs is usually smooth, and
in many cases approximately parabolic, in contrast to the Coulomb potential of atoms,
possessing a singularity at the nucleus. Also, QDs are composed of thousands of atoms or
more. This size leads to a smaller interlevel separation (tens of meV at most), compared
to that of atoms, where the shells are separated by a few eV. Moreover, the lateral
confinement (Coulomb potential) in atoms is fixed and defined by the electrostatic charge
of the nucleus, which makes it difficult to change the number of electrons confined by it.
In contrast, in certain types of dots the QD lateral confinement can be tuned, and the
same device can contain from zero to hundreds of confined electrons (I shall discuss these
devices later on).

The first successful attempts at creating QDs date back to the early 1980’s [62]. Since
then fabrication technologies have progressed rapidly, and today it is possible to manu-
facture dots of various shapes and sizes, and to tailor almost all the properties indicated
above. It is then not surprising that QDs have become an area of interest both in the
domain of fundamental research and device physics. This thesis will cover in detail only a
small section of this ever-increasing field. For the reader interested in a general introduc-
tion to QDs, QD devices and terminology in their full variety I suggest three books: by
Bimberg, Grundmann, and Ledentsov [20], Jacak, Hawrylak, and Wéjs [62], and Mich-

ler [85], and review articles by Ashoori [8], Kastner [65], and Chakraborty [30].
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1.2 Quantum-dot density of states

Control over the number of confined carriers seems to be of particular importance in
the physics of quantum dots. Therefore, many important realisations of QDs employ
semiconductor structures, where the number of mobile carriers can be controlled by means
of appropriate doping, illumination, etc., and this work will focus on such structures
exclusively. For this reason, at this point I will introduce an alternative treatment of the
QD energy quantisation using the language of the density of states (DOS). At the same
time, the notion of “zero-dimensional states” is presented here more rigorously and put
in context of other structures with reduced dimensionality, such as quantum wells and
wires. The description given in this Section is similar to that presented in Ref. [62].

In my simplified description of the influence of the reduced dimensionality on DOS
I shall assume my semiconductor materials to be isotropic, with parabolic energy bands
and spherical energy isosurfaces, and I shall consider the electrons in conduction bands
only. In this case, in order to calculate the DOS as a function of the wave vector k£ I
will consider the number of electronic states n(k) contained in an infinitesimal region d™k
at the wave vector k, where m = 3, 2 or 1 is the dimensionality of the material (the
case of zero-dimensional structures will be considered separately). The DOS will be then
calculated as [7]

dn(k)

DOS(k) = == (1.1)

This expression may contain an extra factor of two if the spin degeneracy of levels is taken
into account.

Usually the DOS is calculated as a function of energy in the band, and to make contact
with this formulation, I shall make use of the well-known formula for energy as a function

of the wave vector:
Kh2k2

E(k) 2m*’

(1.2)

where m* is the effective mass of the electron, and £ is the length of the wave vector k.
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Figure 1.1: Four semiconductor structures of different dimensionality: bulk (a), quantum
well (b), quantum wire (c), and quantum dot (d). The narrower (wider)-bandgap material

is marked by the dark (light) colour

By combining the two formulae one can calculate

dn(FE)
dE

DOS(E) = (1.3)

Let us now consider four semiconductor structures, presented in Figure 1.1. Part (a)
of this Figure shows a macroscopic sample of bulk semiconductor material. If the dimen-
sions of this sample are infinite, the single-particle energy spectrum in the conduction
and the valence bands is continuous, and spherical coordinates can be introduced in Eq.
(1.1). Thus the function n(k) gives the number of states contained between two spherical

surfaces, one with radius k£, and another, with radius k& + dk, and is

n3P (k) = 4mk*dk. (1.4)

(27)?
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As a result, the DOS as a function of energy in the band attains a well-known square-root

form:

N 32
DOS*(E) = (2;)2 (%) VE. (1.5)

The energy as a function of the electronic wave vector k is shown in the left-hand panel,
and the DOS as a function of energy - in the right-hand panel of Fig. 1.2 (a). Finite di-
mensions of the sample introduce boundary conditions resulting in quantisation of energy
levels, but if the dimensions are sufficiently large, the spacing of levels is very small. The
spectrum becomes quasi-continuous, and the changes to DOS are negligible.

If a layer of a narrower-bandgap material is sandwiched between two thick layers of a
wider-bandgap material, one creates a quantum well, shown in Fig. 1.1 (b). If the edge
of the conduction band in the well material is below the band edge of the barrier, the
mobile carriers in the structure are trapped inside the well. They are still free to move in
the plane, but their motion across the structure is strongly quantised. Thus the energy
spectrum consists of distinct quantum-well energy levels Fy, E, ..., on top of which there
is a quasi-continuous spectrum corresponding to the planar motion. In the left-hand panel
of Fig. 1.2 (b) I show this energy spectrum as a function of the in-plane wave vector. In
this case the function n(k) describes the number of states of each subband contained
between two circular boundaries, one with the radius k£, and the other with the radius

k 4+ dk, and is
1
(2m)?

n?P (k) = 2mkdk. (1.6)

The resulting total DOS of the quantum well is zero for energies below Ej, and then
exhibits a steplike dependence on energy, with steps beginning at energies F;, i.e., the

quantum-well subband edges:

1 m*
DOS*?(E) = Z %?H(E - E), (1.7)

where the Heaviside’s function H(z) = 1 for > 0 and 0 otherwise, and i enumerates the

quantum-well subbands. This DOS is shown in the right-hand panel of Fig. 1.2 (b).
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A quantum wire, shown schematically in Fig. 1.1(c), is formed when the motion of
the carriers is restricted in two directions, while they are free to move along the third
direction (say, along the y axis). The electronic energy spectrum consists now of a ladder of
discrete quantum-wire modes, on top of which there is a quasi-continuous one-dimensional
spectrum corresponding to the motion along the wire. I show this spectrum as a function
of the electronic wave vector in the left-hand panel of Fig. 1.2 (c). In this case the function
n(k) for each subband describes the number of states contained in a one-dimensional
section of the reciprocal space between the wave vector k£ and k + dk, and is

n'P (k) = %dk. (1.8)

The total quantum-wire DOS consists of a series of inverse-square-root peaks centered at

the edges of the quantum-wire subbands:

m\ 12
DOS'?(E) = - % (2h2 ) (El_ —H(E-E) (1.9)

This function is shown in the right-hand panel of Fig. 1.2 (c).

Finally, the zero-dimensional structure - a QD - is created when the well material
is surrounded by the barrier on all sides, as shown in Fig. 1.1 (d). Here the electronic
spectrum consists of discrete states, and the DOS is composed of delta function peaks at
the QD energies; the height of these peaks corresponds to the degeneracy of the levels.
In Fig.1.2 (d) I show a QD DOS for a dot whose base is a square and height is small
compared to the lateral dimension. Due to this dimensional disparity, the energy scale
introduced by the stronger, vertical quantisation will be different from that due to the
lateral confinement: one expects a ladder of widely spaced vertical energy levels, on top
of which there are the modes of the lateral motion, still discrete, but spaced much more
closely. In fact, if the QD height is sufficiently small, the energy of the second vertical
subband is already above the barrier, so the bound states contain the lowest vertical
mode only. Furthermore, due to the square symmetry of the QD base, one expects the

first excited state of this system to be doubly degenerate, which is reflected in the height
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of the corresponding delta peak in Fig. 1.2 (d). This schematic picture is, of course, only
valid in the region of energies corresponding to the QD bound states (below the barrier).
Energies above the barrier correspond to the continuum states. At this point one might
compare the DOS of these propagating states to that of the bulk material. Indeed, the
wave functions of the states above the barrier will be distorted by the presence of the
QD, but these distortions do not lead to major changes in the square-root dependence
of the DOS on energy. Of particular interest is the case in which the wave function is
distorted just so that its part inside the QD fits smoothly to the undistorted function in
the barrier. If interrogated outside the QD, the state behaves then as if there was no QD
at all (in other words, the scattering cross-section of the QD for this particular energy
is zero). This is the Ramsauer-Townsend effect [110], well known in scattering theory,
and the propagating states with this property are called resonances. These resonances
can be thought of as an “echo” of the QD potential, experienced by the states above the
barrier, and their corresponding wave functions must carry symmetries characteristic for
the QD. They are of interest in device physics, and in particular in quantum-dot infrared

photodetectors, briefly mentioned in the next section.

1.3 Fabrication of quantum dots

This Thesis is devoted to presenting my theoretical understanding of many-body systems
confined by the potential of nanostructures. I would like to apply my theories to real
systems, and obtain experimental verification of my results. To this end it is necessary to
model the behaviour of the particles in realistic, experimentally attainable confinements.
Perhaps the best way to understand the most important properties of these confinements
is to present the techniques of nanostructure fabrication. In two decades of technological
progress in this area several such techniques were developed. The starting point in some

of them is a semiconductor quantum well (see Fig. 1.1(b)). One can further process



CHAPTER 1. INTRODUCTION 16

such a sample with lithography and etching to obtain free-standing nanopillars with a
small amount of quantum well material located somewhere along their height [38, 103].
One can also evaporate an array of miniature metallic electrodes onto the surface, and
subsequently polarise them with voltage - the resulting electrostatic field propagates down
to the quantum well layer and creates the lateral confinement [115]. The third method
here would involve a selective illumination of the surface by an intense laser beam. This
causes interdiffusion of the well and barrier materials within the illuminated spot, which
leads to modulation of the thickness of the quantum well and creation of dots [25]. A
completely different method - selective epitaxy - involves growing a bulk substrate of the
barrier material with a mask on its surface. Then, using lithographical methods, one
creates small openings in the mask, and then one deposits the material of the quantum
well. The well material will adsorb on the substrate only in the openings, so, as a result,
we obtain an array of small islands [45, 73].

Although using all these methods it is possible to obtain QDs in a variety of shapes
and sizes, recent years have brought new techniques, allowing for far more advanced QD
engineering. [ will cover in detail three such techniques: gated QD devices, growth of

QDs by self-assembly, and fabrication of quantum rings by lithography and etching.

1.3.1 Gated quantum-dot devices

This type of QD design is particularly important in the context of my research into
electronic correlations. In this design the potential of the nanostructure confines only
one type of carriers, i.e., electrons, and the number of confined carriers is controlled
electrostatically by applying voltage to metallic gates. The experimental technique most
frequently used to probe these dots is transport spectroscopy, in which information about
the system is derived from the properties of tunnelling current induced to flow through
the device. I shall discuss the principles of tunnelling spectroscopy in the next Section;

now let us only describe how these devices are built and operated.
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There are two variants of the design. In the first one the lateral confinement for
electrons is created by means of material engineering (by lithography and etching tech-
niques) and using a metallic gate to control electronic population of the system. The
first such device was fabricated by Ashoori et al. in 1992 [9], and the properties of the
system of electrons localised on it were analysed theoretically by Hawrylak in 1993 [51].
Another device was created by D.G. Austing in the group of Seigo Tarucha at NTT
Japan [4, 11, 92, 121, 122].

Here the gates are used not only to induce the tunnelling current, but also to change
the lateral confinement of electrons by squeezing them electrostatically to a smaller area.
The common feature of both designs is the fact that the tunnelling current flows vertically,
i.e., along the axis of rotational symmetry of a disk-like quantum dot. This is why these
structures are called vertical quantum dots. Let us briefly describe the second of the
two devices.

A SEM micrograph and a schematic diagram of the sample is shown in Fig. 1.3.
Its most important part, providing the vertical confinement for electrons, is the double-
barrier heterostructure (DBH) seen in the centre of the diagram; the lateral confinement
is produced by the lateral surface of the pillar and controlled by the gate. The sample is
composed of the following elements. The substrate material is the n-doped GaAs, seen at
the bottom of the diagram. Doping introduces electrons into the conduction band of this
layer, so that we have mobile carriers that can be injected into the quantum dot. On top
of this substrate the DBH is created using epitaxy. Each of the two barriers (denoted by
darker regions in Fig. 1.3) is made of Alg2,Gag 7sAs; the thickness of bottom barrier is 7.5
nm, and that of the top barrier is 9.0 nm. The material of the 12.0-nm-thick well between
the barriers is Ing g5Gag g5 As; the small amount of indium present in this layer causes the
edge of its conduction band to be below that in the GaAs substrate. The DBH is then
covered by a thick layer of n-doped GaAs, on top of which a metallic gate is deposited.

A pillar, with the radius of about 0.5 pm, is formed using lithography and etching, and



CHAPTER 1. INTRODUCTION 18
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Figure 1.3: SEM micrograph of the vertical quantum dot device and a schematic diagram

of the structure of the sample (Adapted from Ref. [123])

a metallic gate is also deposited on the lateral surface of the pillar, close to the DBH.
In the tunnelling experiment a small voltage is applied to the top gate, which causes the
electrons from the bottom nGaAs layer (the source) to tunnel into the dot and out to
the top nGaAs layer (the drain). The tunnelling current is measured as a function of the
voltage on the side gate and typically as a function of an external magnetic field applied
along the rotational symmetry axis of the system.

Let us now move on to the second design of gated QDs: the lateral gated quantum-
dot device. I am aware of several experimental groups working with the lateral dots,
for instance the groups of Charles Marcus [81] and Robert Westervelt [129] at Harvard
University, Marc Kastner at MIT [63], Klaus von Klitzing at MPI Stuttgart [66], and
Leo Kouwenhoven at Delft in the Netherlands [68]. Here, however, I shall present a
device built by A.S. Sachrajda and co-workers in the Quantum Physics Group at IMS

NRC [31, 32, 33], because it was used to obtain experimental verification of my theoretical
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results. To the best of my knowledge, this was the first device in which the number of
confined electrons was known and controlled (from zero to about fifty). This was also the
first device whose design allowed for the spin blockade spectroscopy (I shall describe this
spectroscopic technique in detail in the next Section).

Fabrication of the lateral QD device consists of two stages. The first stage involves
epitaxial growth of a GaAs/AlGaAs heterojunction. A schematic diagram of the sample
composition is presented in Fig. 1.4(a). First, a thick (1-3 um) layer of GaAs is deposited
epitaxially on a substrate. Then, a heterointerface is formed by depositing undoped
AlGaAs on top of the structure. The growth of AlGaAs is terminated after reaching
the optimal spacer thickness, marked in Fig. 1.4(b) by the vertical line. Thicker n-doped
AlGaAs and GaAs layers are subsequently deposited on top. This growth sequence results
in the alignment of the conduction band edge shown in Fig. 1.4(b). As we move within
GaAs along the z axis, closer and closer to the AlGaAs material, we see conduction
band bending and formation of a triangular quantum well at the interface. This well is
filled with electrons coming from ionised donor atoms (white circles). The well is narrow
enough so that the electrons populate only its lowest subband. The spacer, made of
undoped AlGaAs separates the doped AlGaAs region from the interface to insure high
quality of the 2DEG in the well (and, in particular, high mobility of electrons).

The triangular quantum well at the interface confines the electrons only in vertical
direction (along the z axis). The lateral confinement, i.e., the confinement in the plane of
the 2DEG, is created by means of metallic gates, deposited lithographically on the surface
of the sample. A scanning electron micrograph of the gates is shown in Fig. 1.4 (c). In
this design there are typically four gates. The two large side gates and the small top gate
provide the electrostatic lateral confinement, while the small bottom gate (the “plunger”
gate) serves to tune the QD energy spectrum in the tunnelling experiment. Under negative
voltage, all of these gates create an electrostatic potential, which propagates down to the

2DEG layer and depletes it locally of electrons, forming a soft lateral confinement, whose
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Figure 1.4: (a) Composition of the GaAs/AlGaAs heterojunction with the 2DEG. (b)
Profile of the edge of the conduction band along the growth axis of the heterojunction.
(c) Scanning electron micrograph of the surface of the sample with metallic gates. (d)
Calculated electrostatic potential created by gates as experienced by electrons in the
2DEG layer (Parts (a) and (b) adapted from Ref. [116]; part (c) courtesy of A.S. Sachrajda

at IMS NRC)
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size is of order of 0.5 ym. This electrostatic potential, calculated [70] for typical gate
voltages, is shown in Fig. 1.4(d). By tuning the gate voltages one can empty the dot of
electrons, and then add them, one by one, in a fully controllable manner [31].

In this design, the source and the drain are the 2DEG electronic reservoirs to the left
and to the right of the QD, so that the external voltage is applied laterally across the
device, as shown in Fig. 1.4(c). Electrons tunnel in and out of the QD across the quantum
point contacts defined by the top gate and one of the side gates, respectively (along black
arrows in Fig. 1.4(c)). The tunnelling current is measured as a function of the voltage
on the plunger gate V; and the magnetic field perpendicular to the device. The function
of this gate is to change the QD size by pushing it towards the top gate (increasing the
slope of the large potential maximum shown in Fig. 1.4(d)).

In the lateral design the current tunnelling through the QD can be made to be spin-
polarised. This occurs when an external magnetic field is applied perpendicularly to the
surface of the sample (i.e., perpendicularly to the 2DEG). Note that the left and right
reservoirs of electrons (the source and the drain) are both 2DEGs, and the tunnelling of
electrons into and out of the QD involves the 2DEG edge states. Upon application of the
external magnetic field, the Zeeman energy distinguishing between the two spin species
translates into spatial separation of these edge states, so that the states close to both
point contacts carry predominantly electrons with the same spin [31]. It is possible for
electrons with the opposite spin to tunnel into the QD, however the probability for this to
occur is small due to the fact that these electrons have to tunnel through a wider barrier.
The spin-polarised injection and detection of the tunnelling current will play a major role
in one of the main chapters of this thesis.

Note that the vertical device maintains a good circular symmetry irrespective of the
potential applied to the side gate. The lateral device, on the other hand, produces a non-
circular confinement, and the degree of this noncircularity varies with gate voltages. For

these reasons, the shell structure of the single-particle spectrum of the QD can manifest
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itself more clearly in vertical devices [121], while in the analysis of the results obtained
with the lateral device the more complicated nature of the potential (due to its lower
symmetry) often has to be taken into account [70].

The gated quantum-dot devices are relatively large (their typical size is of order of
hundreds of nanometres), and therefore the shells of the single-particle energy spectrum
are relatively close in energy (typical gaps are of order of several meV). These charac-
teristic energies are smaller than the energy equivalent of the room temperature, and, in
fact, the experiments on gated dots are usually conducted in millikelvin temperatures in
a dilution fridge. The separation of single-particle states can be tuned by appropriately
changing the voltage on the gates. Thus, the coefficient )\, defined in the beginning of this
Thesis as the ratio of the characteristic interaction and single-particle energies, can be
tuned as well, and one can obtain system with large electron-electron interactions. Due
to the small interlevel gaps, the single-particle energy scale of the gated QDs can also
be significantly tuned by an external magnetic field of order of several Tesla, leading to
a nontrivial evolution of the system with the increase of the field. These issues will be
discussed at length in this Thesis.

Gated quantum dots are also interesting in the context of the single-electron transis-
tor [64] and Kondo physics (see Refs. [47, 117] and references therein). Finally, gated
QD devices are seen as extremely promising candidates for quantum bits and quantum
logic gates in quantum computing proposals. The most important theoretical paper in
this field was published by Loss and DiVincenzo in 1998 [79]. In it, the authors consider

using coupled gated QD devices to create entangled states of electrons.

1.3.2 Self-assembled quantum dots

Let us now move on to describing a different type of QD design, leading to formation of
a confinement trapping both electrons and holes, and based on the self-assembly process.

Self-assembly of QDs can be achieved by exploiting the Stranski-Krastanow phase tran-
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sition occurring in the growth of highly strained semiconductor heterostructures [118]. I
shall describe some details of this procedure following Petroff and DenBaars [98].

Let us consider a situation when a crystal of one semiconductor material is grown
epitaxially on the surface of another material, and these two materials differ in their lattice
constants. If this difference is very large, the deposited material will form an epitaxial
layer full of crystallographic defects. However, if this difference is of order of 1-10%, the
deposited material will initially form a layer of good quality, but highly strained. The
degree of strain will increase as the layer becomes thicker, and, upon reaching a critical
thickness (usually of order of a few monolayers), the planar growth of the layer will stop,
and small islands of deposited material will start forming on top of the residual “wetting
layer”. This is the Stranski-Krastanow phase transition. The growth that follows this
transition is a kinetic process driven by the strain energy. To minimise this energy, the
material from larger dots will tend to diffuse along the wetting layer towards the smaller
dots, thus leading to a better uniformity of the island sizes. If we deposit more material,
it will also diffuse and end up being incorporated by the islands, which will grow both
in height and diameter. Having obtained islands (dots) with desired dimensions, one
can interrupt the growth and cap the structure with a “cladding layer” of the substrate
material.

The islands will function as QDs only if the substrate material has a higher bandgap
than the island material. In this context, GaAs or Al,Ga; ,As is frequently used as the
barrier, on top of which In,Ga;_;As or In,Al;_yAs is deposited to form dots. Depending
on molar fractions, the lattice mismatch between the barrier and dot materials is of order
of 1-8%, making it possible to grow high-quality self-assembled dots (SADs). For example,
the change from the two-dimensional to the three-dimensional growth mode upon reaching
the critical thickness is illustrated in Fig. 1.5. In this case InAs is being deposited on the
GaAs substrate, and the critical thickness of the dot material is about 1.7 monolayers.

Dots seen in Fig. 1.5 have diameters of order of 30 nm +5% and heights of order of 10 nm
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Figure 1.5: Atomic force micrographs of InAs self-assembled quantum dots for InAs cov-
erage of 1.6 (a), 1.7 (b), and 1.8 monolayers (Adapted from Ref. [98]). Figure (d) shows
a transmission electron micrograph of an InAs SAD (photo courtesy of J.P. McCaffrey at

IMS NRC [85])



CHAPTER 1. INTRODUCTION 25

(a)

(b)

(c)

{d)

(e)

Figure 1.6: Growth of quantum disks using the indium flush technique (From Ref. [126])

+4%. Additionally, in Fig. 1.5 (d) I show a transmission electron micrograph of a SAD
grown at the Institute for Microstructural Sciences, NRC Canada.

By choosing the misfit strain one can tune the sizes of SADs, since a smaller misfit
leads to a smaller amount of strain, larger critical thickness and, ultimately, larger dots.
Also, depending on the conditions of the growth itself, one can obtain SADs in a variety
of shapes (e.g., pyramids with a square base [82], lenses [41, 101], hemispheres with
hexagonal base [98]).

In recent years, Wasilewski et al. at IMS [126] developed a technique allowing for
further control over the shape of SADs. The sequence of sample processing steps in
this method is shown schematically in Fig. 1.6. First, SADs are grown in the Stranski-
Krastanow mode along the lines laid out above, and in this example InAs is used as the
dot material. As already mentioned, this growth leads to the formation of an array of dots
with similar, but not identical diameters and heights, as shown in Fig. 1.6 (a). Then, the

cladding layer is deposited on top of the sample, but this growth is interrupted, so that
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dots are not completely covered with the barrier material (Fig. 1.6 (b)). This situation is
energetically unfavourable from the point of view of total strain energy, since the indium
atoms on the still exposed surface of dots experience a large stress from the surrounding
GaAs barrier material. To lower this energy, indium atoms begin migrating from the dots
onto the cladding layer, and gallium atoms from the cladding layer onto the dot, which
results in a decrease of the dot height and capping of all dots (Fig. 1.6(c) and (d)). Note
that this process of migration of atoms results in truncation of dots to uniform height.
The next step, called the “indium flush”, involves increasing the sample temperature, so
that indium deposited on the surface of the cladding layer is desorbed (Fig. 1.6(e)). As
a result, one obtains an array of randomly distributed dots, with variations in diameter,
but with uniform heights. The growth can be further continued, i.e., upon deposition
of the layer of barrier material of chosen thickness, evaporation of InAs can start again.
The process of island growth will then start again, but now positions of QDs in the new
layer will be aligned with positions of QDs already grown. This is due to the strain field,
created by the QDs, and propagating upwards through the cladding layer of the barrier
material. Thus one obtains stacks of coupled quantum disks, shown in Fig. 1.7.
Typically, the SADs can confine both electrons and holes, making it possible to ex-
amine the many-body systems composed of particles carrying both positive and negative
charges. These systems can be probed by optical spectroscopic techniques, which I will
briefly describe later on. However, the interaction effects are difficult to resolve in suffi-
cient detail when working with arrays of QDs presented in the above discussion. This is
due to the fact that the sizes of all dots are not exactly identical, but rather form a narrow
distribution. As a result, different dots have slightly different single-particle energy spec-
tra, and the corresponding spectroscopic features, obtained as a superposition of signals
from the entire array, are broadened (this effect is called “inhomogeneous broadening”).
To eliminate this broadening, a single QD must be isolated for a spectroscopic study.

There are several techniques which can be used to this end. One of them involves cover-
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Figure 1.7: Cross-sectional TEM image of a stack of quantum disks grown using the
indium flush technique. Image on the top right-hand side shows a magnification of the

main micrograph (From Ref. [126])

ing the capped sample of the SAD array with a metallic thin film and creating openings
in this film. If the opening is sufficiently small, it may be possible to address exactly
one QD below. Another method involves covering a selected area of the QD array with
a mask and etching away everything around it [14, 16]. This leads to a formation of a
“mesa” structure, which, if it is small enough, may contain exactly one QD (or exactly
one stack of QDs created using the indium flush method) in its interior.

Control over the position of a QD can also be achieved by patterning the substrate,
on which the dots are grown. Here I shall describe a technique developed recently by
Williams and co-workers at IMS [130]. The general principle of this method is illustrated
in Fig. 1.8(a). First, a planar substrate (in this case InP) is grown as described previously.
Then, a mask is deposited on top of the surface, and rectangular or square openings (with
dimensions W of several hundred nanometres) are defined in it by lithography and etching

(Fig. 1.8(a)). Then, deposition of the substrate material is resumed, but the material
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Figure 1.8: (a) Schematic illustration of the diffusion process in the growth on patterned
substrates. This process leads to formation of templates, on top of which several (b) or
only one quantum dot (c) can be grown. In these scanning electron microscopy images

the base of the pyramid is 400 nm long (Adapted from Ref. [130])
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adsorbs only in the openings. The substrate grows forming ridges or pyramids with walls
corresponding to low-index crystallographic planes. This growth is continued until the
width 7" of the area on top of the ridge is narrow enough to contain only one or two QDs.
At this point the growth of the substrate is stopped, and deposition of the QD material
begins. The QD material does not adsorb on top of the mask, and diffuses onto the
sides of the ridge. However, the adsorption rate of the material to the substrate in this
crystallographic orientation is very low. The deposited atoms continue diffusing across
the structure, as shown in Fig. 1.8(a), until they reach the top of the pattern, where they
finally adsorb.

Upon reaching the critical thickness the Stranski-Krastanow transition takes place,
which leads to the growth of SADs on top of the pattern. As demonstrated in Fig. 1.8(b)
and (c), the number of grown SADs depends on the size of the plateau. By careful
engineering and growth control of the ridge it is possible to localise precisely one InAs
SAD on top of the InP pyramid.

As mentioned before, QDs grown by self-assembly have diameters of order of a few tens
of nanometres, and heights of a few nanometres. For typical materials used for barriers and
dots, the depth of the confinement potential in the conduction band (or the height of the
wall of the “quantum box”) is of order of 600 - 800 meV. This means in practice that the
lateral confinement of the QD is strong, and its single-particle energy spectrum consists of
a small number of levels (typically fewer than 15), usually grouped into degenerate shells;
the energy gaps between shells are of order of tens of meV. Introduction of charge carriers
into such QDs can be achieved by optical excitation, but also by introducing doping in the
barrier. The latter technique allows to fill QDs with electrons (or holes, depending on the
kind of doping) without illumination. These systems are then ideal to study formation,
dynamics and recombination of excitons and neutral or charged excitonic complexes (for
reviews and references on that subject, see Refs. [62, 85]). Another important area of

fundamental research involves enclosing such excitonic QDs in photonic cavities. In so
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doing, both excitonic and photonic modes are confined and strongly coupled to each other
(this is the Purcell effect [46]; for additional review and references see Ref. [55]).

The rapid progress in fabrication technologies of SADs is also driven by their possi-
ble applications, particularly in quantum optics. Single self-assembled QDs are used as
detectors of infrared radiation (quantum dot infrared photodetectors, QDIPs) [10, 76],
optical memories [97], single-photon sources [86, 88, 108] important for quantum cryptog-
raphy [18, 24]. Arrays of SADs are also used as optically active regions in high-efficiency
lasers. To date, successful prototypes of QD lasers have been demonstrated to work with
low injection currents and high quantum efficiency even at room temperatures [42]. There
are also proposals to use the intraband transitions in coupled QDs to generate terahertz

radiation [5, 6, 131].

1.3.3 Quantum rings

I shall now describe another structure capable of confining electrons and holes, but with
a topology different than that of the SADs - a quantum ring. The ring geometry is of
interest, because it allows to access and manipulate the phase of a charge carrier confined
in it by an external magnetic field, applied in parallel to the rotational axis of the system.
As I will show later in this Thesis, this leads to the appearance of persistent currents and
Aharonov-Bohm oscillations of the system’s energy as a function of the number of flux
quanta threading the ring.

Quantum ring nanostructures can be fabricated using self-assembly techniques [78],
but here I will describe another method, involving lithography and etching. This is
because I shall compare the results of my theoretical treatment of the many-body systems
in the ring geometry to measurements performed on nanostructures obtained using this
technique. My description follows that presented by Bayer et al. in Ref. [15]. A scanning
electron micrograph of the sample is shown in Fig. 1.9(a). The inner radius of the sample

is about 15 nm, while the outer radius is 45 nm. Composition of this sample is shown
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Figure 1.9: (a) Scanning electron micrograph of the quantum ring structure. The circular
shape seen on top is the metallic mask produced by lithography before etching. (b)
Schematic diagram of the structure; the carriers are confined in the areas marked by

circles (Adapted from Ref. [15])
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schematically in Fig. 1.9 (b).

To create the disk confinement, a 7-nm-thick layer of the Ing;GageAs quantum well
material is lithographically deposited on top of the GaAs barrier material, and then
capped by a 20-nm-thick layer of GaAs. Then, a ring-shaped metallic mask is deposited
lithographically on top, and the structure is processed with etching. The etching removes
only the GaAs material not covered by the mask and is stopped before reaching the
InGaAs layer, so that the quantum well material is covered by a thin capping layer of
GaAs everywhere except under the mask, where the GaAs layer is thick.

Let us now describe how the lateral confinement is formed. In regions where the GaAs
layer was etched, the band profile along the vertical direction corresponds to an InGaAs
quantum well with asymmetric barriers: on the bottom side of the well we have the GaAs
material, but on the top side we have a very thin layer of the barrier material followed by
vacuum. On the other hand, in the region underneath the GaAs ring the InGaAs well has
a symmetric profile, being surrounded by a thick layer of GaAs material on both sides.
The difference in height of the top barrier (very high in the etched area, lower under the
GaAs cap) and the additional strain field produced by the GaAs ring creates a shallow
lateral confinement, with a height of a few tens of meV, inside the InGaAs well. Note
that the carriers are confined not in the ring structure seen in Fig. 1.9 (a), but rather
underneath it (in the regions marked with circles in Fig. 1.9 (b)).

The control over ring radius R in the experiments with magnetic field is of particular
importance. I will show in Section 2.3 that the magnetic field enters the single-particle
energies in the system through the number of flux quanta Ny ~ wR?/m¢?, where £ ~
1/ V/B is the magnetic length. Thus N4 depends linearly on the magnetic field, but the
proportionality coefficient scales as R2. For rings with large radii it is thus sufficient to
use small magnetic fields to obtain large values of V4. On the other hand, the radii should
be sufficiently small to produce distinct quantisation of single-particle energy levels. The

rings fabricated by lithography and etching can be easily engineered to satisfy all these
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conditions, since their radii can be naturally varied over a wide range by depositing a
smaller or larger metallic mask. However, the existence of open surfaces appears to worsen
the optical quality of the structures. This problem does not appear in self-assembled

rings [78], but here the control of their shapes and sizes is much more difficult.

1.4 Spectroscopy

In the previous Sections I have described how the semiconductor quantum dots are created
and how they can be populated with carriers. I will now move on to describing how
these systems can be probed experimentally and how to interpret the results of these
measurements. Understanding of these issues is important, since I seek experimental
verification of my theories.

In this Section I shall describe two spectroscopic techniques. The first one - the
photoluminescence spectroscopy - is used to study the electron-hole systems confined in
quantum dots and rings. The second technique - the tunnelling current spectroscopy -
is used to probe the many-electron systems confined in gated quantum dots, and I will

discuss it in the particular case of the lateral QD design.

1.4.1 Photoluminescence experiment

As already mentioned, the self-assembled QDs and quantum rings are typically capable
of confining both electrons and holes. That is why the experimental tool most commonly
used in their study is photoluminescence (PL) spectroscopy. Here I shall describe only its
fundamental principles; the interested reader will find reviews and references in Ref. [62,
85].

In order to obtain the PL signal, the QD must be first populated with electron-hole
pairs (excitons). This is achieved by illuminating the sample with photons, whose energy is

sufficient to promote electrons from the valence band to the conduction band in the barrier
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material. Electrons and holes thus created diffuse across the sample and become confined
in QDs, creating a system of many, strongly interacting charge carriers of both signs. The
number of carriers trapped inside the QD depends on the power of the exciting laser.
These complexes have a finite lifetime, since electrons will recombine with holes to lower
the total energy of the system. In the absence of non-radiative recombination centres,
such as impurities, the electron-hole pairs recombine radiatively, emitting photons, which
are detected.

Information about the properties of the many-exciton system is obtained from the
analysis of energies of the emitted photons. The emission spectrum of a dot with N
excitons is given in by the Fermi’s golden rule, which, in the dipole approximation, can

be written as
2
A(w, N,i) = % Z [{f, (N —1)|eé- r\i,N)\Q(S(Ei — By — hw), (1.10)
f

where € is the polarisation of the photon. Here, |i, N) denotes the initial state of the
N-exciton system. On the other hand, |f, (IV — 1)) denotes the final state of the N — 1-
exciton system, which remains after the recombination of a single exciton. Note that the
state | f, (IV — 1)) can be the ground state or one of the excited states of N — 1 excitons.
Due to the delta function in the above formula, the energy Aw of detected photons, or the
position of the PL peak on the energy axis, is equal to the energy difference between the
initial state |i, N) and one of the final states |f, (N — 1)).

The dipole matrix element present in the above formula gives the intensity of each emis-
sion line. The magnitude of this element depends on the initial and final wave functions of
the system. Thus, the height of PL peaks provides information about the symmetries of
many-particle wave functions, complementing the information about their energy, derived
from peak positions.

The PL spectroscopy of single QDs is described in great detail in articles by Bayer et
al. [16] and Hawrylak [50]. In these papers the authors model the systems of interacting

electrons and holes in the absence of the magnetic field, and identify how these interac-
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tion manifest themselves in PL spectra. A detailed analysis of interactions in excitonic
artificial atoms in a magnetic field is given in Ref. [34], where the magnetic-field-induced
degeneracies in the single-particle energy spectrum allow the study of interactions in the

context of the so-called “hidden symmetries”.

1.4.2 Tunnelling experiment

Let us now move on to describing the tunnelling current spectroscopy. This technique is
used to examine the properties of many-electron gated quantum dots, and I shall describe
how it is applied to lateral devices.

In Section 1.3.1 I have described that the lateral QD is created electrostatically by
locally depleting the 2DEG of electrons. The 2DEGs on either side of such local lateral
confinement are reservoirs of electrons. Upon application of a small voltage across the
device, the electrons from, say, the left lead - the source - can tunnel into the dot, then
tunnel out on the other side of the device and be collected by the other 2DEG - the drain.
Since the tunnelling electron experiences the repulsion of all electrons already confined in
the dot, this type of spectroscopy is called the Coulomb blockade (CB) spectroscopy. A
detailed review of this experimental technique can be found in Ref. [69], here I shall only
summarise its most important properties. My description follows that of Sachrajda et al.
in Ref. [107].

In Fig. 1.10 I present a schematic diagram of the lateral quantum dot device. The two
tall tunnelling barriers are created by the side gates of the lateral device. The plunger
gate, represented by the voltage symbol Vp, is used to adjust the confinement of the dot,
thereby shifting the QD states with respect to the Fermi energy py of the source S and
drain D.

Inside the dot there are several states lying below the Fermi level of the leads and
occupied by electrons (full circles), and several states lying above p; and unoccupied

(empty circles). In the simple charging model, the gap between the last occupied and the
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Figure 1.10: Schematic representation of energy levels in the lateral quantum dot (see

text for details) (Adapted from Ref. [107])
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first unoccupied QD level is equal to €?/C + AFE, where C is the total capacitance of the
QD. The capacitance C describes the effects of interactions of electrons inside the dot
with each other and with the environment. Thus, if one wants to add another electron
into the dot, one has to overcome the charging energy e*/C. In lateral devices considered
here this energy dominates the energy landscape of the system. The energy AF reflects
the characteristic properties of the QD spectrum, and contains terms due to the discrete
nature of QD single-particle states, effects of exchange and correlations. The goal of this
technique is to examine the dependence of this term on the parameters of the system:
confinement, external magnetic field, number of electrons.

Let us now formulate the conditions that have to be fulfilled for the current to flow.
Let us denote the total energy of the system of n electrons in the left lead (the source) by
E1(n), and the total energy of the system of NV electrons in the quantum dot by Egp (V).
The tunnelling of a single electron will be observed only if in this process the total energy

of the leads plus total energy of the QD is conserved, i.e., when

Ep(n)+ Egp(N)=Er(n—1)+ Egp(N +1). (1.11)
Upon rearranging the terms in the above equation one gets

Ep(n) — ErL(n—1) = Egp(N +1) — Egp(N). (1.12)

The left-hand side of this equation is the electrochemical potential of the lead: uz(n) =
Er(n) — Er(n —1). Since the lead contains a very large number of electrons (of order of
10™), this quantity does not depend on the number of electrons: pr(n) = pz-

The right-hand side of the equation (1.12) is the electrochemical potential of the QD:
pon(N) = Egp(N + 1) — Egp(N). It depends on the energy of the initial state of the
system (with N electrons) and on the energy of its final state (with N + 1 electrons),
and thus carries information about the many-particle properties of the system of many
interacting electrons confined in the device. The electrochemical potential pgp(N) is a

discrete function of the number of electrons and a smooth function of the plunger gate
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voltage Vp.

Let us now consider the alignment of energy levels presented in Fig. 1.10. In this case
the electrochemical potential of the lead falls in the middle of the Coulomb gap between
QD states. Thus the current cannot flow due to the Coulomb blockade. However, by
tuning the plunger gate voltage Vp the electrochemical potential pgp(IN) of the QD can
be shifted down, and, for some gate voltage, aligned with the Fermi level u;, of the leads.
If this alignment is achieved, one electron from the source can tunnel back and forth
through the left barrier. In the Fig. 1.10, to the right of the QD we also see the drain,
whose Fermi energy is equal to that of the source. Therefore, upon alignment of all
electrochemical potentials the electron will be able to tunnel from the source through
the dot to the drain. If a small voltage is applied across the device (between the source
and the drain), this tunnelling can be detected as a current flowing through the dot.
Thus, if the current is measured as a function of the plunger gate voltage, one registers
a series of peaks for voltages Vp, for which the electrochemical potentials are aligned. In
such instances the number of electrons on the dot is undetermined. For the intermediate
voltages, for which the condition (1.12) is not satisfied, the current is blocked, and the
QD contains a well-defined number of electrons.

A typical addition spectrum, i.e., the current measured as a function of the gate
voltage, and additionally as a function of the magnetic field, is presented in Fig. 1.11. The
gate voltage is shown on the vertical axis, and the magnetic field - on the horizontal axis.
One sees a collection of lines, denoting peaks of the tunnelling current. Each consecutive
line marks the fulfilment of the tunnelling condition for the QD electrochemical potential
top(N) with one more electron confined in the dot. The lines exhibit a series of features
(kinks), which are signatures of changes of the ground state of the N-electron dot or of
the N + 1-electron dot. My goal is to reproduce this structure of kinks theoretically.

Before I conclude this description, I shall mention two possible modifications of this

experimental technique. I have described the principles of the CB spectroscopy in the
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Figure 1.11: A typical addition spectrum of a gated quantum dot shown as a function
of the magnetic field. Forty-five Coulomb blockade peaks are shown, with the charging

energy manually removed (From Ref. [32])
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low source-drain voltage regime, since I have assumed that the Fermi level of the source
was aligned with the Fermi level of the drain. In this mode the tunnelling electron probes
only the ground state of the N + 1-electron dot. The spectrum presented in Fig. 1.11
was measured exactly in this mode, with the source-drain voltage of order of several peV.
However, a larger voltage (but smaller than the charging energy e/C) can also be applied
across the QD. In this case the electron tunnelling from the source will probe not only
the ground state, but also the excited states of the system. Also, on tunnelling from the
QD to the drain, the electron may leave the N-electron dot in its ground or excited state.
I shall compare my results to an experiment performed in this mode in one of the main
chapters of this Thesis.

Up to now I have considered the electron tunnelling through the dot as a charged
particle, experiencing the Coulomb repulsion from all the electrons confined in the dot.
But this particle also has spin, and, as I have described in Section 1.3.1, in the case of
lateral devices in an external magnetic field the tunnelling current consists predominantly
of electrons with the same spin (say, spin down). In this case the fulfilment of the condition
(1.12) is necessary, but not sufficient for the current to flow. The electrons will be able to
tunnel onto the QD only if the final state of the N +1-electron dot can be created from the
initial state of the N-electron dot by adding one electron spin down. If it is not possible,
the current will not flow, and this phenomenon is called spin blockade. In practice the
tunnelling current is not completely spin-polarised, and instead of the full spin blockade
one only sees a modulation of the amplitude of the current. But this is sufficient to derive
information about the spin of the system, which is complementary to that obtained from
the positions of the CB peaks. Results of the spin-blockade experiments will also be

discussed in this Thesis.
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1.5 Electronic correlations in QDs: overview of the

field and scientific contributions of this thesis

In the previous Sections I have defined the main subject of this Thesis: systems of many
strongly interacting particles confined by semiconductor nanostructures. In particular, I
am interested in identifying the manifestations of correlations, which requires a nonper-
turbative treatment, and comparing them to those of the direct and exchange Coulomb
interactions, which can be captured by simpler mean-field approaches. I choose to treat
interacting systems confined in nanostructures, because these systems can be probed ex-
perimentally both in the regime of strong and weak interactions, which allows to obtain
experimental verification of my theories. This is possible because the properties of the
atomic-like QD spectrum (in the language of quantum chemistry) or, equivalently, the
QD DOS (in the solid-state terminology) can be engineered. There are several degrees of
freedom: one can, within certain limits, change QD dimensions and symmetry, thereby
influencing the energy separation and degeneracy of the single-particle states (separation
and height of the DOS peaks) [11, 70, 105]. By building higher dots one can also bring
the states belonging to the second vertical subband down in energy, thereby introducing
new symmetry elements into the spectrum [58]. By choosing appropriate materials for
the barrier and the well, one can tune the band offsets, thereby influencing the depth
of the confinement, which gives control over the QD wave function penetration inside
the barrier. Positioning two or more (QDs close to each other allows for their quantum-
mechanical coupling and leads to formation of an artificial molecule [2, 14, 96, 106, 114].
Finally one can also fill some types of QDs with a precisely known number of electrons. I
will proceed by analysing the properties of the system of confined interacting particles as a
function of these parameters, calculating characteristic quantities that can be measured,
and comparing my results to the available experimental data, if such data exist. But,

before I move on to discussing my results, I shall present a brief overview of the state of
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scientific knowledge on the subject.

Collective behaviour of particles in strongly interacting systems leads to a number of
nontrivial phenomena, from magnetism to superconductivity. Because of that it is not
surprising that significant theoretical and experimental attention has been devoted to
them for many years. Interest in collective phenomena in structures with lowered dimen-
sionality has been particularly strong since 1982, when Tsui, Stérmer, and Gossard [124]
observed the appearance of unusual features in transport spectra of the two-dimensional
electron gas under a magnetic field, interpreted as a new state of matter, whose appear-
ance is due to electronic correlations. This effect, named fractional quantum Hall effect
(FQHE), was intensively studied, both theoretically and experimentally (for reviews and
references see a recent paper by Murthy et al. [89]). Here I shall mention two papers,
written by Robert Laughlin [72], which opened the way towards theoretical understand-
ing of the system and won their author the Nobel prize in 1998. In these papers the
three-electron problem in a strong magnetic field is solved exactly with the assumption of
a truncated Hilbert space. This solution is further extrapolated in a variational manner
to systems with more electrons. As a result of these calculations, Laughlin postulated
the existence of so-called incompressible correlated electronic states. He discusses one
case in detail - the filling factor v = 1/3 phase, or, in other words, the case in which
there are three magnetic flux quanta per each electron. In the words of Laughlin, these
incompressible ground states of the system are “new states of matter”, and they are
somewhat reminiscent of the superconducting state in that they enable a dissipationless
electrical conductivity. Laughlin predicted a series of such states decreasing in density
and terminated by the Wigner crystalline phase.

Research into correlations in zero-dimensional nanostructures - quantum dots and
rings - proceeds in several directions.

One direction of research involves examining properties of an N-electron system con-

fined in a QD at zero magnetic field. The control parameter in this research is the ratio A
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of characteristic single-particle energy gaps to characteristic interaction energies, already
defined in the beginning of this Thesis. Calculations in this domain were carried out
using exact diagonalisation for N = 3, 4 [36, 87], and quantum Monte Carlo [40], spin
density functional [102], and unrestricted Hartree-Fock theories for larger systems [133].
Mikhailov [87], for instance, finds that tuning the interaction parameter A results in
changes in the ground state of the three-electron system in a parabolic dot. If A is suffi-
ciently small, i.e., if the single-particle energy quantisation dominates the energy spectrum
of the system, the ground-state configuration can be constructed by distributing the quasi-
particles dressed in interactions on single-particle QD orbitals, subject only to the Pauli
exclusion principle. In this regime the ground state of the three-electron system has to-
tal spin S = 1/2, since two electrons are placed on the lowest single-particle state with
opposite spin, and one unpaired electron is confined on the first excited single-particle
state. However, there exists a critical value A. of the interaction parameter, for which
Mikhailov finds a transition in the QD ground state. The new ground state has maximal
total spin possible, S = 3/2, and has the nature of a rotating Wigner molecule. This
is demonstrated by examining the electronic pair correlation function, which appears to
suggest that the electrons assume positions in the corners of a rotating equilateral tri-
angle. Similar results are also obtained for larger systems [40, 102, 133]. I shall analyse
transitions similar to those mentioned above, i.e., transitions from weakly correlated to
strongly correlated phases of an electronic droplet as a function of the system parameters
and the size of the Hilbert space in Chapter 4.

Wigner crystallisation is also observed in the presence of the magnetic field [48, 90, 119,
134]. Of particular interest is the case of the so-called maximum-density droplet (MDD),
i.e., the system, in which all electrons are spin-polarised and occupy the consecutive single-
particle orbitals on the lowest Landau level (in the language of the integer QHE, this is
the v = 1 state). It has been shown [80], that this state is the ground state of the system

for a finite region of magnetic fields. If the magnetic field becomes too low, electrons start
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populating the Landau level with spin up. However, if the magnetic field is increased
beyond the stability of MDD, holes appear in the centre of the dot, and the charge
density of the system assumes the shape of a ring (falls to zero in the QD centre). This
phenomenon was considered from the point of view of the Wigner crystallisation [48, 119].
In a study of pair-distribution functions derived from the ground states of QDs in high
magnetic field, it was found that the structure of electronic quantum Wigner molecules
is similar to the lowest-energy configurations expected for classical charged particles.
The second broad direction of research involves studies of magnetic-field evolution of
electronic quantum dots. In the literature there is a large number of publications on the
subject, presenting results of calculations carried out both at zero and finite magnetic fields
using various methods: mean-field Hartree-Fock [17, 134], density-functional theory [11,
59, 75, 111, 128], quantum Monte Carlo [22, 49|, and exact diagonalisation [54, 83]. All
these methods suggest that for QDs with an even number of electrons there exists a
region of magnetic fields, in which the ground state of the system is the so-called v =
2 spin-singlet phase in the terminology of the integer quantum Hall effect. Now, as
the magnetic field is increased, one observes transitions in the ground state of the QD:
electrons flip their spin one by one and the radius of the droplet increases until the fully
spin-polarised maximum-density droplet is formed. If the magnetic field is increased even
further, one expects the formation of QD-equivalents of incompressible states, discussed
earlier in the context of the fractional quantum Hall effect. The sequence of spin flips
can be completely understood without correlations, using simple arguments based on the
competition between the single-particle energy quantisation and the interaction energies
(direct and exchange). However, if correlations are taken into account, this sequence
of phases turns out to be richer: the total spin of the system does not increase in the
steplike manner, but rather exhibits oscillatory behaviour: each spin-flip event is preceded
by a complete spin depolarisation. Similar spin oscillations take place also in the regime of

magnetic field beyond the stability of the MDD: transitions between incompressible states
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(fully polarised) are preceded by spin depolarisations. I find two theoretical treatments
of these effects. First, presented by Imamura et al. [61], treats the correlated electron
states in QDs as “electron molecules”, which leads to interpretation of electronic spin
wave functions as spin configurations in molecules, including the so-called resonating
valence-bond states. The second treatment, put forward by Oaknin et al., [91], describes
the spin-depolarised states as spin-texture excitations (skyrmions), carrying topological
and real charge equal to one. Excitations of the electronic droplet are thus charged
skyrmions, which the authors express as condensates of interacting spin excitons. I shall
discuss these phenomena in detail using the language of exact diagonalisation. This
description, initiated by Hawrylak et al. in Ref. [53], will also include a discussion of
stability of the correlated, spin-depolarised phases as a function of the system parameters
(number of electrons, strength of confining potential, etc.). At this point I shall mention
that in the experiments reported in literature the effects of direct and exchange Coulomb
interactions were clearly identified [31, 33, 92, 121, 122], but, to the best of my knowledge,
the spin depolarisations due to electronic correlations have not been accounted for. It is
only in recent research, carried out by the Quantum Physics Group and the Quantum
Theory Group (with the author of this thesis as a member) at the IMS NRC that these
spin oscillations were clearly identified and traced back to the correlated behaviour of
electrons confined in the lateral gated QD device (see Chapter 5).

Finally, the third research direction involves a specific type of correlations, manifesting
itself in entangled states of systems of particles. The issue of entanglement is of partic-
ular interest for the rapidly developing field of quantum computation (see e.g. [43]). In
quantum computers information is stored and processed using quantum bits (qubits), the
quantum counterparts of classical bits. The difference between these two is such that
classical bits can only store two states: |0) or |1), while qubits can be in any linear super-
position a|0) 4+ 5|1), subject only to normalisation constraints. But information stored

in the form of such quantum state has to be processed using quantum principles as well.
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This is accomplished with quantum logic gates, built out of two coupled qubits; ability to
perform single- and two-qubit operations is sufficient to build a quantum computer. It is
said that the state of the system is entangled, if the total state of the array of qubits cannot
be written as a simple tensor product of states of each individual qubit. If one-electron
gated quantum dots are taken as qubits, as suggested by Loss and DiVincenzo [39, 79],
the state of an array of such coupled qubits is thus a highly correlated state of many
electrons. In this work I shall explore a different qubit design: as two qubits I will take
an electron and a hole, both confined in the same double-dot structure, consisting of two
vertically coupled self-assembled dots. I will show that the entanglement is created in
such systems by the Coulomb electron-hole interaction (Chapter 6).

I shall also analyse the electron-hole correlations outside the context of quantum com-
putation. In Chapter 7 I shall consider the problem of a negatively charged exciton (X,
composed of two electrons and one hole) confined in a quantum ring and subject to an
external magnetic field directed along the rotational axis of the ring. It is well known that
the ground state energy of a single electron in this geometry exhibits the Aharonov-Bohm
oscillations (for reviews and references see Ref. [27]). The X~ complex is charged (carries
the charge of an electron), so one would expect this complex to exhibit the Aharonov-
Bohm oscillations as well. As I shall demonstrate, this is true in the regime of weak
interactions, i.e., when the radius of the ring is sufficiently small. In the regime of strong
interactions the electron-hole correlations lead to suppression of the Aharonov-Bohm os-
cillations of X~. Of interest is thus a photoluminescence experiment, in which the X~
complex recombines, emitting one photon and leaving one electron still confined in the
ring. When calculated as a function of the magnetic field, the energy of such photon
exhibits clear Aharonov-Bohm oscillations due to the oscillatory character of the energy
of the final-state electron. Thus one can observe optically the oscillations of the energy
of the single electron, and this is possible only due to the correlated character of the X~

complex.
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However, before I can move on to considering all these problems, I must carefully
introduce the tools of my analysis. I start by calculating the single-particle states of
nanostructures with various geometries: parabolic and disk-shaped QDs and the quantum
ring. Then I shall move on to describing selected computational methods of many-body
physics capable of capturing the correlation effects. My method of choice is the exact
diagonalisation technique. This approach involves three steps: construction of a basis set
of the Hilbert space, writing the Hamiltonian in this basis in a matrix form, and numerical
diagonalisation of this matrix. I shall describe each of these steps in detail. I shall also
compare the exact diagonalisation with other computational techniques, such as the spin

density functional theory and the quantum Monte Carlo approach.



Chapter 2

Single-particle states in typical

quantum-dot confinements

Before I can move on to describing the many-particle properties of QDs, I first need
to understand their single-particle spectra. In Chapter 1 I have shown that QDs can
be fabricated in a variety of sizes and shapes, and the lateral confinement produced by
each of them possesses its own characteristic symmetry properties. Detailed calculations,
fully accounting for all the details of particular structures, are complicated and require
large computational effort [26, 28, 70, 99, 112]. In this work, however, I shall approxi-
mate the complicated QD confinements by model potentials, capturing the fundamental
physics, but at the same time making it possible to understand it in simple terms. I
shall consider three fundamental classes of “ideal” QD geometries: (i) parabolic QDs, (ii)
disk-shaped QDs, and (iii) quantum rings. It turns out, in fact, that these potentials are
reasonably good approximations of the real QD potentials, so much so that in most cases
it is sufficient to treat the peculiarities of each QD as small perturbations to the ideal
shape [34, 70]. The two-dimensional parabolic potential is commonly used in modelling

of gated quantum dot devices, both vertical [92, 121, 122] and lateral [31, 32, 33|. It has

48
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also been successfully applied to lens-shaped self-assembled QDs (obtained without using
the indium-flush technique) [34, 50, 57]. In this work, however, when talking about SADs
I shall refer to the indium-flushed structures, whose geometry is approximated better by
the disk-shaped potential. Finally, when discussing the quantum ring geometry I shall
assume that this ring is of infinitesimal thickness, i.e., it is a one-dimensional circular
system. This Chapter is devoted to describing and comparing the single-particle energy

spectra of these three fundamental lateral confinements.

2.1 Parabolic lateral confinement

First I consider two-dimensional parabolic confinement in the presence of an external
magnetic field B = [0, 0, B] perpendicular to the plane in which the potential is defined
(by default, the XY plane). The Hamiltonian of a single electron in this case attains the

following form:
1
2m*

H=

(f) -+ SA)Q + %m*w%rQ — gupBo, (2.1)
where m* and e is the electron’s effective mass and charge, respectively (e > 0; the
negative sign of the charge is accounted for by the “+” sign in the first term), ¢ is the
velocity of light, and wy is the characteristic frequency of the confining potential (CGS
units are used). The last term of this Hamiltonian is the Zeeman term, with g being the
Landé factor, ug = eh/2m, - the Bohr magneton, and o = :I:% - the z component of
the electronic spin. Since the Zeeman term depends only on the spin component of the
electronic wave function, I shall neglect it in the following calculations, and return to it
in the discussion of results.

The problem at hand has been solved by Fock [44] and Darwin [37], and this is why
the single-particle energy spectrum of such a parabolic potential is called the Fock-Darwin
spectrum. The cited authors solved the Schrédinger equation with the Hamiltonian (2.1)

in real space. I shall follow a different path, involving the harmonic-oscillator raising and
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lowering operators. My description is similar to that given in Refs. [51, 62, 127].
To proceed I must first define the form of the vector potential A. I choose the sym-
metric gauge: A = [—By/2, Bx/2,0]. To prove that this potential indeed corresponds to

the vertical magnetic field B as specified above, I calculate

PGk
VxA=| & 2 &|=kB+B)2=0005 (22)

—By/2 Bz/2 0

A\ 2
Let us expand the expression (f) + ﬁA) using the above vector potential:

. e:\> ., eB eB e?B?
(p + EA> =p’+ 2—6(—p$y +pyz) + Q—C(—ypx + zp,) + e (2% + 7).

Let us now define the cyclotron frequency w. = eB/m*c (for GaAs, the cyclotron energy

hw. ~ 1.728 meV for the magnetic field B = 1 T, and scales linearly with the field).

Taking into account that yp, = p,y and zp, = pyz, I get

~

e\ . 1
(p + EA> =p°+ Z(m*)%?r2 + m*wel,,

where l; = pyx — pgY is the z-th component of the angular momentum operator. The
Hamiltonian can be now written in the following form:

1 1 1 1 -
p>+-m* (wg + —wf) r’ + 5%5:5- (2.3)

H=
2m* 2 4

Using the notation (wg + iwf) = w? (“hybrid frequency”), I get

1, 1 1.
H= 5 p? + 3™ wir? + Ewclz. (2.4)

Let us further introduce complex variables:
z=x— 1y, ¥ =z +1y;
0, = 0y + 10y, 0 = 0 —10y;
and write the position and gradient in their terms:
(z42%), y=5("—2);
0y =3(0,+0;), 0= 2%(82 —03).

N [—

T =
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It is straightforward to see that 22+1% = 2z2* and 32—%85 = 0,0;. Since p? = —77,2(33-1-85),

the Hamiltonian in the new coordinates attains the form:

] h2 * 1 * * 1 * Ok
H = —Q—W(azaz) + g™ wi(z2*) — Zhwc(zaz — 2°03). (2.5)
Next step is to define a unit length characteristic for this potential. I take ¢ = Zm)zwh'
Note that in zero magnetic field w, = wy and flp_y = ﬁ In the absence of the
parabolic confinement, but in the presence of the magnetic field, I get /g = mf‘wc (the

magnetic length). Let us now insert this unit length into the Hamiltonian. The new,

dimensionless variables are: Znew = Zoi¢/f and O,new) = Ou(aiq)f- Dropping the label
“new” I get:
Aee (0.0 + b2 (o) — Lhaon(o, — 2 07) (2.6)
= =5, (0:0; 5" Wil (22 3 we(20; — 270; .

(in the last term no new factors appear, since ¢ crosses out). If I insert the explicit forms
of 7, T obtain

N 1 1
H= hwh(zzz* —0,0%) — Zhwc(zﬁz — 2°0}). (2.7)

z

Let us now introduce the raising and lowering operators:

a=3(5+0:v2), ot =5 (5 -0.v2),
b=1(5+0.v2), bt =1(5-0:v2).

To examine their properties I check two out of six of their possible commutators.

1. Commutator [a,a™].

la,at] = % { (%zz 20, 48— 26;‘62> _ (%zz Y N 2828:)} .

But z commutes with z* and 0, commutes with 0}, so the respective “pure” products

cross out. Further, the commutator [0, z] = 2 and [0}, 2*] = 2, so
[a,a™] = 1.

Similarly one can prove that

[b,b%] = 1.
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2. Commutator [a, b*].

1 1 1
0,6 = 4 {(§z2 R 2(3;)2) - (§z2 ot 20— 2(3;)2)} .

Again, the respective “pure” products cross out. Moreover, the commutator [0}, z| =
0 and [0,,2*] =0, so
[a,b7] = 0.

Similarly one can prove that any commutator of a (a™) with b (b™) is zero.

Thus I have shown that the pairs of operators (a, a™) and (b, b") are independent.
I shall express the Hamiltonian in terms of these operators. To this end I need to

perform the inverse transformation:

z=+2(a+b"), z*=+2(at+b),

(2.9)
0, = (b—a"), 0= s5(a—10").
Upon substitution into the Hamiltonian I obtain:
- 1
H = Shw, ((@+b")(at +b) = (b—a®)(a—b"))
1
— e ((@+b*)(b—a®) = (a* +b)(a—1b")), (2.10)
and, after reduction,
H=h ( + +1> +h (b+b+1) + Lho (a+a+ 1) ~ L (b+b+ 1) (2.11)
TR\ T ATy ) T 9) Tl 2) 2" 2) \*©
I can now define a pair of oscillator frequencies
1
wy =wp SWe: (2.12)
and, in terms of these frequencies,
~ i 1 n 1
H = hwy (a a+ §)+hw_ (b b+ 5) (2.13)

Thus I have obtained a Hamiltonian of two harmonic oscillators. In analogy to the linear

harmonic oscillator [35], the eigenstates of this Hamiltonian can be written as

Inm) = nl!m! (a*)" (5)" o0y, (2.14)
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with n, m being quantum numbers (n, m = 0, 1,2,...). The lowering and raising operators

acting on such state give

aln,m) = Viiln = 1,m), a*[n,m) = Va+1ln+1,m);

(2.15)
bln,m) =+/mln,m —1), b*|n,m) =+vm+ 1jn,m+ 1).
I am now ready to write the formula for the energy of the eigenstate |n, m):
1 1
e(n,m) = hw; (n + 5) + hw_ (m + 5) . (2.16)

Let us now include the Zeeman term, introduced in the beginning of this Section, but
neglected afterwards. This term accounts for the fact that the electron also has the spin
degree of freedom, and its eigenstate should be identified by three quantum numbers:
Inmao), where o = +1 is the quantum number describing the z spin component. In this

case the electronic eigenenergies are
1 1
g(n,m,0) = hwy (n + 5) + hw_ (m + 5) — gupBo. (2.17)

In Figure 2.1 I show a few lowest-lying energies £(n, m, o) as a function of the magnetic
field. In this calculation I take hwy = 6 meV and the Landé factor ¢ = —4.4. This
value of hwy is characteristic for the vertical dots in GaAs, but my Landé factor is one
order of magnitude larger than that of GaAs (ggeas = —0.44). Thus the Zeeman energy
E; = |gupB| is artificially enhanced; I have done so in order to make the spin splitting
visible on this energy scale.

At zero magnetic field I have w, = w_ = wy and
ep=o(n,m,o) = hwg(n +m+ 1), (2.18)

i.e., the energy of all eigenstates with the same value of n + m is the same. These are
the degenerate shells; let us name a few of them here. The lowest one, called the s shell,
consists of two states, both with n = m = 0, but with different o (i.e., the s shell is

doubly degenerate with respect to spin). The second one, called the p shell, consists of
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1 i B B

s hw .
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Landau level
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Figure 2.1: Energy spectrum of a single particle in a two-dimensional parabolic potential
versus the magnetic field. I show the energies of twenty eigenstates which in the absence
of the magnetic field form four lowest shells (see text for details). In this figure, the

parabolic frequency hAwy = 6 meV, and the Landé factor g = —4.4.
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states (n,m) = (0,1) and (n,m) = (1,0), both of them doubly degenerate with respect to
spin. The third - d shell consists of states (n,m) = (0,2), (1,1), and (2,0), each of them
spin-degenerate. Subsequent shells can be generated in analogous manner; the degeneracy
of each next shell is greater by 2 than that of the previous shell (that includes the spin
degeneracy). Moreover, the energy distance between consecutive shells is constant and
equal to hwg.

As the magnetic field is increased, the frequency w, increases, and the frequency w_
decreases. Also, the Zeeman factor starts playing a role, causing the states with different
spin orientations to differ in energies; this gap grows linearly with the magnetic field.
Therefore, all degeneracies are removed, as seen in Fig. 2.1. In this Figure, in the lowest
part of the spectrum I denote the spin-down states in red, and the spin-up states - in blue.
This spin splitting occurs also for all higher states (accounted for in the graph, but not
indicated with colours). Note that at certain values of the magnetic field (e.g., about 2 T
and about 4 T) one sees crossings of levels belonging to different shells. In the absence of
the Zeeman energy, this effect is observed whenever the ratio of frequencies w, /w_ = p/q,
where p > ¢ are nonzero integers.

For very large magnetic fields the frequency w_ is very small (approaches zero), and
the frequency w, approaches the cyclotron frequency w.. At these fields the Landau level
(LL) structure of the spectrum becomes particularly clear. The lowest Landau level (LLL)
is composed of one pair of states from each shell (differing only by spin); these states are
plotted in Fig. 2.1 in red and blue for spin down and up, respectively. A characteristic
feature of all of these states is that all of them have the quantum number n = 0. The
second LL (plotted in green) is composed again of one pair of states from each shell, but
now with the exception of the s shell, whose states have already appeared in the LLL. All
states here have the quantum number n = 1. In the Figure, one can also see a few lowest
energies of states belonging to the third and fourth LLs, whose quantum numbers n are

equal to 2 and 3, respectively. Each higher shell contributes to all LLs; I have presented
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only four lowest shells for clarity. Since in the unmodified parabolic potential the number
of shells is infinite, in reality each LL is composed of an infinite number of states. In this
context let us note that the operators a, at are associated with the frequency w,, and
therefore they are respectively inter-Landau-level lowering and raising operators. The
difference of energies of two corresponding states (i.e., with the same m and o) belonging
to two consecutive LLs is thus equal to hw,. Analogously, b, b" are associated with
the frequency w_, and are respectively intra-Landau-level lowering and raising operators.
The splitting between two consecutive levels in one LL, neglecting the Zeeman splitting,
is equal to hw_.

Finally let us express the z component of the angular momentum operator in the

language of the lowering and raising operators:

L= _g (20, — 2°0%) = —h(b*b — a*a). (2.19)

The states |nmo) are thus also eigenstates of the operator [, with eigenvalues Al =
h(n —m). The z component of the angular momentum is thus a good quantum number
(the corresponding operator [, commutes with the Hamiltonian, and thus can be diago-
nalised together with it). In this context the degenerate structure of the p shell at zero
magnetic field becomes more clear: the two doubly-spin-degenerate states have opposite
angular momenta (1 and —1, respectively), and their degeneracy simply reflects the axial
symmetry of the potential. In the d shell, however, there are three doubly-spin-degenerate
levels. The degeneracy of two of them, with angular momenta 2 and —2, respectively,
can be accounted for similarly to the states in the p shell. However, the third state, with
angular momentum 0, does not fall into this category. Its degeneracy with the other two
states in the d shell results from dynamical symmetries of the parabolic potential. These
symmetries are similar to those in real atoms: atomic shells exhibit degeneracy which is
higher than that due to the spherical symmetry of the system [35]. This is reflected in the
fact that the energy of atomic levels depends only on one quantum number (the principal

quantum number n).
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The notion of angular momentum also allows for an interpretation of the raising and
lowering operators: in acting on a state [nm) the operators a and a™ respectively decrease
and increase the angular momentum, thus they control the “counterclockwise” motion
of an electron (to use a classical analogy). They also work against the magnetic field,
which, in classical terms, accelerates the electron in the “clockwise” motion via the Lorenz
force (this is because the magnetic field B = [0,0, B] is parallel to the z axis and the
electronic charge is negative). This is why Landau levels are composed of states with the
same quantum number n: upon application of the operator a™ the electron acquires one

quantum of the “counterclockwise motion”, which transfers it one LL up.

2.2 Confinement of the quantum disk

In this Section I shall find the single-particle energy spectrum of an electron confined in
a potential of a quantum disk with infinite walls. Let us denote the disk thickness by W
and the disk radius by R. The Hamiltonian of the system in an external magnetic field

B = [0, 0, B] takes the form

1
2m*

H=

~ 2 ~
(f) + SA) +V(z,y,2) — gupBo, (2.20)

with all the symbols defined in Section 2.1. The potential V(z,y,2) equals zero inside
the disk, and infinity outside it. When expressed in cylindrical coordinates (g, 6, z), this

potential does not depend on the angle . Moreover, it can be separated into two parts:

V(e z) = Vr(o) + Vz(2), (2.21)

each part dependent on one coordinate only. The potential V5 is that of a square quantum
well with infinite walls, and the potential Vj is that of a two-dimensional circular quantum
well, also with infinite walls. Here I have assumed that the z axis coincides with the axis

of rotational symmetry of the system.
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At this point one can analytically obtain the energies and wave functions of an electron
in the absence of the magnetic field, and this is what I shall do in the first part of
this Section. The symmetry introduced by the magnetic field, however, turns out to be
different than that of the disk potential, which makes it difficult to obtain an analytical
solution in the presence of the magnetic field in a closed form. I shall therefore calculate
the full single-particle energy spectrum as a function of the magnetic field using numerical

methods. This procedure will be described in detail in the second part of this Section.

2.2.1 Quantum disk in the absence of the magnetic field

To simplify the notation, I will express all energies in units of the effective Rydberg,
R = m*e*/2¢2h?, and all lengths in the units of the effective Bohr radius ap = eh*/m*e?
(¢ is the dielectric constant of the QD material). For example, for GaAs ¢ = 12.4 and the
effective mass of an electron m* = 0.067 my, which yields 1 R & 5.93 meV and 1 ag =~ 97.9
A. In these units the Hamiltonian (2.20) with B = 0 and written in cylindrical coordinates

attains the following form:

. 1/ 0 0 0 0?
H = [_E (Qa—gga—g + ﬁ) - @] + Vr(o) + Vz(2) (2.22)

(note that the coordinates p and z are now dimensionless). The above Hamiltonian can
be separated into two parts, one describing the motion in z direction, and one describing
the radial and angular motion. To take advantage of this fact, I shall seek the full wave

function in the form
U(o,0,2) = ®(0,0)&(2),

i.e., as a product of the in-plane and the z-dependent parts. In this case the Schrédinger

equation written with the Hamiltonian (2.22) splits into two equations:

l—% (Qa%ga% + g—;ﬂ ®(0,0) + Vr(0)®(0,0) = Er®(0,0), (2.23)

~52 (2) + Vz(2)§(2) = Ez&(2), (2.24)
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and the total energy £ = Er + E.

Let us solve the equation (2.24) first. As I have already established, Vz(z) is the
potential of a square quantum well with infinite walls. This problem is considered in
many textbooks on quantum mechanics (see e.g. Ref [35]), and here I shall just write
out its solution. For simplicity let us assume that the left wall of the well is positioned
at z = 0, and the right wall - at z = W. In this case the normalised eigenstates of the
equation (2.24) can be expressed by sines only (the wave functions do not contain cosine

terms as they attain nonzero values at z = 0, i.e., at the edge of the well):

&i(z) = \/%sin (%z> : (2.25)

The corresponding eigenenergies are:
E; () = —=1?, (2.26)

and the vertical quantum number [ =1,2,.. ..
Let us now move on to the equation (2.23). In this case one usually attempts to write

the eigenfunction in the form

®(0,0) = R(p)e'™, (2.27)

since the Hamiltonian of the planar motion contains elements of the z component of the
angular momentum operator (m is the angular momentum quantum number). If one
substitutes this wave function to Eq. (2.23), performs the differentiation and reduces the

exponent on both sides, one obtains

[—é (ga%ga% - m)] R(0) + V(o) R(0) = FR(0) (225)

This equation becomes the Bessel equation if V(g) = 0. Let us assume so, and include the
potential Vx later on. In this case the analytical solution of this equation is possible [1],

and the resulting unnormalised wave functions attain the form

Rin(0) = Jm(y/ Ero), (2.29)
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where J,,, are the Bessel functions of order m, and m is the angular momentum quantum
number.

Let us now include the potential Vz(g). This potential is equal to zero inside the disk
(i.e., for p < R, where R is the disk radius), and infinity on the outside (i.e., for o > R).

Therefore the acceptable wave functions must have a node at p = R, i.e.,
R.(\/ErR) = 0.

This gives the quantisation condition for energy, which is

Fn(n,m) = (%)2. (2.30)

Here o], denotes the n-th node of the Bessel function J of order m. In other words, one
obtains an additional radial (or nodal) quantum number n =1, 2, 3, ..., which, together
with the angular momentum quantum number m, defines modes of the planar motion.
The nodes o), are obtained numerically.

The eigenenergies and normalised eigenfunctions of the total Hamiltonian (2.22) can

now be written as:

n o\ 2 2
E(n,m,l) = (%m) + = p (2.31)

(Flnml) = gm‘]’" (%Q) : \/12—7Teima . \/%sin (%Z) . (232)

Note that the quantum numbers n, m defining the eigenenergies and eigenvectors of the

disk potential, although named with the same letters, have a different interpretation than
the numbers n, m used in the case of parabolic confinements. Here, ng,. can be considered
as the number of nodes in the radial direction, and Amyg;,, is the angular momentum of a
given single particle state. In the parabolic case, n and m denoted the number of quanta of
the “counterclockwise” and “clockwise” motion, respectively, and the angular momentum
of a given state had to be calculated as hl = h(n — m).

To complete the description of the case of zero magnetic field, let us briefly discuss the

obtained energy spectrum. The formula (2.31) consists of two parts: first, corresponding
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to the radial confinement, and second, corresponding to the vertical confinement. The first
part scales as B2, and the second part as W 2. Since the disk height W is usually much
smaller than the disk radius R (for typical disk-shaped InAs/GaAs QDs, R ~ 80 A and
W 20 A), the energy gaps between states with different numbers [, but the same n,m
are much larger than the gaps between states with different numbers n, m, but the same [.
Thus the spectrum consists of widely-spaced subbands, corresponding to different values
of [, on top of which there are different modes of lateral motion, spaced much more closely.
These modes are also organised in degenerate shells, and to demonstrate this let us write
out values of Eg(n, m) for several sets of quantum numbers (n,m). Assuming that the
disk radius R = 1 ag, and using the values of Bessel zeros available in literature [1],
one obtains: Eg(0,0) = 5.783 R (s shell); Eg(0,1) = Eg(0,—1) = 14.682 R (p shell);
Er(0,2) = ER(0,—2) = 26.375 R and Eg(1,0) = 30.471 R (d shell). All these states
are doubly degenerate with respect to spin. Note that here the p shell is also orbitally
degenerate, as is the case with the parabolic potential. The d shell, on the other hand,
is only partially orbitally degenerate. I shall discuss this and other properties of this
spectrum at the end of this Section, together with effects introduced by the magnetic

field.

2.2.2 Quantum disk in finite magnetic fields

Let us now consider the Hamiltonian (2.20) in nonzero magnetic field, but for now omitting
the Zeeman term. If the vector potential A is chosen in the symmetric gauge: A =

[-By/2, Bz/2,0], this Hamiltonian can be written as a sum

N - 1 1
H(B) = H(0) + gm*wfr2 + Swelz, (2.33)

where H(0) denotes the Hamiltonian (2.22) in the absence of the magnetic field, and the
meaning of all other symbols is identical to that introduced in the case of the parabolic

potential in Section 2.1. Thus, there are two terms dependent upon the magnetic field:
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the first one depends on B quadratically, and the second one - linearly. To proceed further,

let us write the above Hamiltonian in dimensionless units:

. N 1 1 .0
H(B) = H(0) + 1_69392 — §Qc%,

(2.34)
where Q. = hiw./R is the dimensionless cyclotron energy. Note that the terms dependent
upon the magnetic field directed along the z axis do not depend on the z coordinate, but
affect only the planar motion of the particle.

To find eigenenergies and eigenstates of the Hamiltonian (2.34), I shall use the exact
diagonalisation procedure. This procedure involves: (i) choosing a basis of single-particle
states, (ii) writing the Hamiltonian in matrix form in this basis, and (iii) diagonalising
this Hamiltonian matrix numerically.

As for the choice of basis, the eigenstates |[nml) (Eq. (2.32)) of the zero-field Hamilto-
nian H(0) seem to be natural candidates. But I do not have to build my basis out of states
with all possible values of n, m and [; I can divide my basis into subsets, containing func-
tions with defined m and [, but with various n. To see why I can do that, let us check how
the Hamiltonian (2.34) acts on a function |nml). 1 have H(0)|nml) = E(n,m,1)|nml),

with F(n,m,l) defined by Eq. (2.31), because these states are eigenstates of the zero-field

Hamiltonian. Further, for the last term of the Hamiltonian (2.34) I get
i, O m
__Qc_ = _Qc s
5 ae|nml) 5 |nml)
which is readily seen from the form of the function |nml) (Eq. (2.32)). Finally, the action

of the second term of H(B) on |nml) can be written in the operator form,

L2 o
16909 |nml).

Let us now analyse the three expressions. In all three cases the part of the function
describing the motion in z direction is left unchanged - in other words, the Hamiltonian
H(B) does not couple states with different quantum numbers . The angular part of the

~

wave function is not affected either - H(B) does not couple states with different quantum
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numbers m (in other words, the magnetic field directed along the z axis conserves the
z component of the angular momentum of the particle). The only part of |nml) not
conserved by H(B) is the radial part, and this is due only to the second term (the one
containing ¢?). Therefore in choosing my basis I can preset the desired angular momentum
m and the quantum number [, and take states with all possible radial quantum numbers
n. Thus, my basis consists of states {|1ml), |2ml), |3ml), ...}

In the second step of the procedure, I write the Hamiltonian H (B) in matrix form in

the chosen basis. The matrix elements of this Hamiltonian are

A 1
(Imny|H(B)|ngml) = E(n,m,1)6n, n, + EQ?(lmnﬂngle) + %Qcénl,nz, (2.35)

where 0§y, 5, is the Kronecker delta (d,,,, = 1 if ny = ny, and zero otherwise). This
expression is obtained by collecting all the terms considered earlier, when I analysed how
H(B) acts on |nml), and taking into account the fact that the functions |nml) form an
orthonormal set.

Note that the first and the third term appears only on the diagonal of the Hamiltonian
matrix, while the second term introduces both diagonal and off-diagonal matrix elements.

This term, written explicitely, has the form

2 1 R a™ a2
Imny| g2 ngml) = — /d SJm(m>Jm(—m>.
< mnl‘g |n2m > R2 ‘Jm—}—l(a%)e}m—}—l(a%)‘ 0 00 0 1Yy

This integration has to be carried out numerically.

Thus, I have defined my basis and I have calculated the Hamiltonian matrix elements
in this basis. Before I can proceed to the proper diagonalisation, note that my basis is
infinite, and therefore my Hamiltonian is also a matrix of infinite dimension. Thus, to be
able to carry out calculations I need to restrict my basis to a finite set, or, in other words,
limit the region of radial quantum numbers n. To decide how to do it, I invoke the rules of
perturbation analysis [35] defining the subsequent corrections to the energy coming from
mixing between basis states. These corrections are always in the form of a ratio, whose

numerator contains the matrix elements of the perturbed Hamiltonian, and the denomina-



CHAPTER 2. SINGLE-PARTICLE STATES 64

tor - respective differences of eigenenergies of the unperturbed Hamiltonian. This means
in practice that in calculating the ground state energy of the Hamiltonian H(B) it is ap-
propriate to choose a basis consisting of several low-lying levels [nml) of H(0); corrections
from higher energies should give small contribution to the energy. Therefore, I choose the
maximal quantum number n,,4,, which will be my cutoff, and the basis {|nml)} will now
be finite and will contain only states with 1 < n < n,,,,. There still remains a question of
how much should 7n,,,; be to guarantee a well-converged result. The most straightforward
method of establishing the cutoff value involves diagonalising the Hamiltonian in several
bases (with different values of 7,,,,) and performing the convergence study. This method
will be used in my case.

I am now ready for the third step of the procedure - the diagonalisation of the Hamilto-
nian matrix. This is a standard operation of linear algebra, and many software packages
capable of performing it are available. Calculations presented here are done using the
Linear Algebra Package (LAPACK) [71] prepared as a FORTRAN software library.

For my model calculations I use a disk potential with thickness W = 20 A and radius
R =200 A. Note that the radius is taken to be more than two times larger than typical
radii of indium-flushed InAs QDs on GaAs substrate (for these structures typically R ~
80 A), but comparable to the radii of InAs QDs grown on InP substrate. I took such a
large radius of the structure to make the magnetic-field-induced effects more visible, since
for small disks the field-dependent corrections in H (B) are small compared to the energy
quantisation introduced by H(0).

First let us examine the convergence of the ground state energy in the channel m = 0,
[ =1 (i.e., zero angular momentum, lowest subband of the vertical motion) as a function
of the basis size. Since the magnetic terms in H(B) increase with increasing magnetic
field, I perform my control calculations for a large field, e.g., for B = 10 T if the result
has converged for this field, it will also be well-converged for smaller fields. For my model

structure at B = 10 T, I have performed calculations with n,,,, ranging from 1 to 20.
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Nmae | Eas(m =0,1l=1,B=10T) (eV)
1 1.41420722313
2 1.41406380561
3 1.41406291665
4 1.41406283691
) 1.41406282464
6 1.41406282195
7 1.41406282120
8 1.41406282095
9 1.41406282085
10 1.41406282081
15 1.41406282078
20 1.41406282077

Table 2.1: Convergence of the ground-state energy for angular momentum m = 0 and the

vertical quantum number | = 1 of a quantum disk with W = 20 Aand R = 200 A

The ground-state energies with m = 0 and [ = 1 obtained in each case are shown in
Table 2.1. As can be seen, the convergence is achieved very rapidly, so that the result
is fully converged already for n,,., = 20. I choose this cutoff of the basis in my further
calculations. Note that for a disk with W = 20 A and R = 80 A the convergence is
expected to occur for even smaller n,,,., since the quantisation introduced by the zero-
field Hamiltonian H (0) is more than four times stronger than that with R = 200 A (indeed,
the result is already fully converged for n,,.; = 5).

Using the exact diagonalisation procedure I have calculated several low-lying energy

levels for my disk structure as a function of the magnetic field for / = 1 and in angular
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momentum channels m = 0, £1, £2, +3. Results of my calculations are shown in Fig. 2.2.
I shall discuss the fundamental features seen in this graph by comparing it to Fig. 2.1,
where I presented the spectrum corresponding to the parabolic potential.

Let us first focus on the case of zero magnetic field. As I already mentioned, the
energy levels of the disk are organised in shells. The lowest shell - the s shell - is doubly
degenerate with respect to spin, and the next shell - p - consists of four states, degenerate
both orbitally and with respect to spin. These two shells behave identically as in the
parabolic case, and the degeneracy of the p shell can be traced to the axial symmetry of
the system. However, the d shell is only partially degenerate: the states with m = 42
form a quadruplet, with both orbital and spin degeneracy present, but the doubly-spin-
degenerate state with m = 0 lies at a slightly higher energy. Therefore, the disk potential
does not exhibit the dynamical symmetries apparent in the parabolic confinement. The
f shell is also split into two quadruplets: one with m = 43 and one with m = +1,
all spin-degenerate. As can be seen, at zero magnetic field states with opposite angular
momenta have the same energy, but there is no degeneracy of states with different angular
momenta. Note also that the energy distance between consecutive shells in the case of
my disk is larger than it is in the case of the parabolic system considered in Section 2.1.
This is due to the fact that in the case of the disk the radial quantisation is stronger than
that of the larger parabolic confinement. In fact, as I already mentioned, in more realistic
approximations of indium-flushed quantum disks the radii are usually taken to be a factor
of 2 smaller than the one I took. This makes the intershell gaps more than four times
larger than those seen in Fig. 2.2. Also, all the energy levels on this graph correspond to
states with the vertical quantum number [ = 1. The states from the second subband are
ignored, as their energies are much higher: due to the small disk width W one expects
the second subband (containing states with | = 2) to start at energies of order of 5.6 eV.

Let us now move on to finite magnetic fields. Here 1 shall explicitely include the

Zeeman term in the Hamiltonian, neglected up to now. Thus, I explicitely account for
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Figure 2.2: Energy spectrum of a single particle in a rigid-wall quantum disk potential
versus the magnetic field. The width of the disk is W = 20 A, and its radius is R = 200 A.
I show the energies of twenty eigenstates which in the absence of the magnetic field form
four lowest shells (see text for details). In this figure the Landé factor ¢ = —4.4. Inset

shows the geometry of the disk confinement



CHAPTER 2. SINGLE-PARTICLE STATES 68

the different possible values of electronic spin s,; the spin quantum number o becomes an
additional good quantum number. The qualitative behaviour of the levels in Fig. 2.2 is
similar to that in the parabolic confinement: the shell degeneracy - both orbital and spin
- is removed. As I did in Section 2.1, here also I artificially enhanced the Zeeman energy
to make it visible on this energy scale. Compared to the parabolic confinement, in the
case of quantum disk the magnetic field has a smaller effect: in Fig. 2.1, at B =11 T the
structure of Landau levels was already well established, while here the states belonging to
different Landau levels are still interspersed. In Fig. 2.2, the states forming the lowest LL
are drawn with red and blue lines (to denote the spin down and up, respectively), and the
states belonging to the second LL - with green lines. The weaker effect of the magnetic
field is due to the stronger zero-field quantisation of the disk confinement: the magnetic
corrections in the softer parabolic potential of large gated QDs contribute more strongly
to the energy spectrum. Calculations made for the more realistic disk potential (with
R =80 A, not shown here) show that there the magnetic field has even less effect: even
at fields as large as 12 T the structure of the spectrum resembles more the split zero-field

shells than Landau levels.

2.3 Confinement of the quantum ring

I shall now move on to discussing the last “ideal” single-particle potential - a quantum
ring. Let us write the Hamiltonian for this system in a general form:

1
2m*

H=

2
(f) + %A) + Vil y, 2). (2.36)

Henceforth I shall omit the Zeeman term, since, as I have already demonstrated, it
changes the single-particle spectra only in a minor way. As for the quantum-ring potential
Vr(z,y, 2), for simplicity I shall take it to be the ring-shaped quantum well with infinites-
imal thickness and width, and infinite walls. In other words, Vz(z,y,2) = Vg(p,0, 2)

restricts the motion of the electron only to the region defined by p = R and z = 0 (the



CHAPTER 2. SINGLE-PARTICLE STATES 69

circumference of a circle, where R is its radius). Moreover, as usual, I take the magnetic
field B to be directed along the z axis, and the corresponding vector potential A in the
symmetric gauge. In this situation it is natural to work in polar coordinates, in which
the electronic motion is described by only one independent coordinate - the angle 6.

If one expresses the Hamiltonian (2.36) in these coordinates, one obtains:

. K2 92 1 0
H= * 2R2——h .
+ m W 80

2.
" 2m*R2 092 (2.37)

I now define the magnetic length as ¢ = y/ii/m*w.. This allows me to write the Hamilto-

nian in the form

. % 0 2
— N 2.
H 2m* R2 < 59 + ¢> ’ (2.38)

where N, is the number of magnetic flux quanta threading the ring. This quantity is
defined as Ny = mR?/2m¢* and is the ratio of the area of the ring to the area defined by
the magnetic length. Since the magnetic length £ ~ B~'/2, the number of flux quanta
increases linearly with the magnetic field.

The eigenstates of the Hamiltonian (2.38) are

1

U,,(0) = em 2.39
0= er (239
where the angular momentum quantum number m = 0, 1, £2, .... The correspond-
ing eigenenergies are then E(m) = 2777*R2 (m+ N¢) , or in the effective Rydberg units,

E(m) = 35 (m + N,)? (now the ring radius R is expressed in the effective Bohr radii ap).
As can be seen from these formulae, the energy of a state with given angular momentum
m depends quadratically on the magnetic field. This is seen in Fig. 2.3, where I show
the quantity E,,R? as a function of the number of flux quanta Ny for several angular
momenta m. The colour lines show energies of states with definite angular momenta m
(the values of m for each curve are given by the number on the graph). I deal thus with a
series of parabolas, with minima at integer values of the number of flux quanta N4. These
parabolas cross at half-integer values of Ny. Therefore the single-electron ground-state

energy, denoted in the graph by the black line, exhibits oscillations as a function of the
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Figure 2.3: Energy of a single electron confined in a quantum-ring potential as a function
of the number of flux quanta. The colour lines show energies of states with definite angular

momenta m (given by numbers on the graph); the black line shows the ground-state energy
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magnetic field. This is the Aharonov-Bohm effect. Note that at each maximum of the
energy there is a transition in the ground state. At these points the angular momentum of
the ground state changes by one unit (in the case of electrons it becomes more negative).
This behaviour is fundamentally different from that observed in the energy spectra of the
parabolic and the disk confinements. There the ground state was always the same (it
was the state belonging to the s shell), and its energy depended monotonically on the

magnetic field (see Figs. 2.1 and 2.2).



Chapter 3

Methods of analysis of confined

many-particle systems

In the previous Chapter I have presented a detailed description of single-particle properties
of nanostructures with various symmetries. It was the first, necessary step towards the
main goal of this work - a description of the behaviour of many particles confined in these
potentials, with a special emphasis put on correlation effects. To be able to achieve this
goal, I have to develop methods capable of describing the systems of many interacting
particles with sufficient accuracy. This Chapter contains a detailed presentation of my
method of choice - the exact diagonalisation technique. I have chosen this method because,
if properly used, it allows to account for all the interaction effects: direct and exchange
Coulomb terms as well as particle-particle correlations, since the results it produces are
eract.

My description will start with the mean-field Hartree-Fock approximation, accounting
only for the direct and exchange Coulomb terms. Then I will begin the construction of
the exact diagonalisation method by discussing two different ways of constructing the

many-particle basis set: configurations of electrons distributed on single-particle states,

72
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and configurations of quasiparticles distributed on Hartree-Fock orbitals. T shall also
discuss possible optimisations of this basis set, obtained by explicitely accounting for all
the symmetries of the system. I shall also compare this method with other approaches,
more approximate and less controllable, but nevertheless capable of accounting for the
correlations. These methods are the density functional theory in the local spin density
approximation, and the quantum Monte Carlo method.

But before I move on to the methods, I will first formulate a general definition of the

problem of many interacting particles confined by a QD potential.

3.1 The problem of many interacting particles in a

QD confinement

3.1.1 The many-particle Hamiltonian

The Hamiltonian of N interacting electrons confined by the potential U(r) of the nanos-

tructure and in the presence of an external magnetic field can be written in the form:

1
2m*

(fni + SAZ-)2 + U(ri)] + % P (3.1)

i#] elri — x|’

where the notation corresponds to that introduced in Chapter 2. The first term in the
above Hamiltonian introduces the single-particle QD spectrum for each confined particle,
and has been considered in the previous Chapter. The second term is new - it describes
the particle-particle Coulomb interactions.

The notation of my analysis will become particularly simple if I express the Hamilto-
nian in the language of the fermionic creation and annihilation operators. They will be
denoted by c;> and c;,, respectively. These operators create (annihilate) a particle on the
single-particle orbital ¢ with spin o. Here ¢ is a composite orbital index, denoting (n,m)

in the case of the parabolic potential, (n, m, 1) in the case of the quantum disk, and m in
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the case of the quantum ring. In the language of these operators the Hamiltonian takes

a simpler form

H =Y E(i,o)ccis + 3 Z (io, jo'|V|ka', lo)ch ¢l CrorCis- (3.2)

io ijkloo’

Now the summation extends over all single-particle orbitals.
Creation operators also allow for a concise notation regarding many-particle states.
In their language, a configuration obtained by distributing N electrons on single-particle

orbitals can be written as

|i101,7:202, .. .,iNUN> = CZUIC?;UQ e C;‘;VUN‘()), (33)

where |0) denotes the vacuum. The equivalent of the above configuration, written in real
space, is the Slater determinant built out of orbitals ¢o. The antisymmetry of the state
is guaranteed by the Fermionic anticommutation rules of the creation and annihilation
operators:
{cf, ¢ ci} ={eci, c;} = 0; {cz-,c;’} = 0;j. (3.4)
The configurations constructed in such a way are not eigenstates of the many-body Hamil-
tonian (3.2), since these states are built out of the single-particle orbitals, and the Coulomb
interaction can scatter particles between these orbitals. But the exact eigenstates of the
interacting system can be written as linear combinations of many such configurations.
The question of what these combinations should be is the central question of this thesis.
To complete my definition of the many-body problem, I have to define the Coulomb
matrix element (i, j|V'|k,[) appearing in the Hamiltonian (3.2). In general these matrix

elements can be constructed by carrying out the real-space integration:

/ Wyor (7
/drl/d ry w 1'1 ]a (1‘2) k (1‘2) l(rl)‘

r; — 1y

(i, jo' |V ko', lo) (3.5)

In the remainder of this thesis I will be particularly interested in the matrix elements in
the parabolic confinement. The orbitals ¥(r) are then the harmonic-oscillator states. In
this case the matrix elements can be obtained analytically in a closed form. I shall present

a detailed description of their evaluation in the next Section.
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3.1.2 Coulomb matrix elements in the harmonic-oscillator basis

In this Section I calculate analytically the electron-electron Coulomb scattering matrix
elements in the basis of the two-dimensional harmonic-oscillator orbitals. This calculation
is similar to that presented in Ref. [127]. The final form of the Coulomb matrix elements
in this basis was first given in Ref. [52], and later also reported in Ref. [34, 70].

In the units of effective Rydberg and effective Bohr radius (see Section 2.2) the part of

the Hamiltonian (3.2) describing the electron-electron Coulomb scattering can be written

as:
1
Hg = 5 > (iojo'lv|kd'lo)ehclicrorcio, (3.6)
ijkloo’
where
2
ol — ) = 2 3.7
(o= ral) = (37)

and the composite indices in the harmonic-oscillator basis i = (n,m}), j = (n), m}),
k = (ng,ma), I = (ny1, my).
Further I will use the coordinates x and y of each particle written in the language of

the harmonic-oscillator lowering and raising operators introduced in Section 2.1:

x=£(a+a++b+b+), yz&%(a—a*—b—l—b*) (3.8)

Let us start the analysis by unfolding the Coulomb interaction into the basis of plane
waves. In what follows I shall suppress the spin index ¢ of the orbitals, as it will play no

role in this derivation.

(iglofkl) = ([ {] qu A g)|1)
= qu (jleatr2 k)|1) = qu ile" ¥ |) (gl |k), (3.9)
with v, = 47” being the Fourier transform of the Coulomb term. This transform is calcu-

lated in the following way:

/drgeiqr =9 /oo rdr /27r d(brleiiqr cos(¢r—dq)
r 0 0 r
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27 oo .
= 2/ dr/ dor > (—i)memér=9a) I (1q)
4
= 47T/ drJo(qr) = q7r (3.10)

Let us calculate the first term of the sum (3.9) . Substituting the equations (3.8) I get
the form of the exponent:
ez‘(‘%‘(al+af+b1+bf)+i%(a1—af—bﬁ-b;‘))

eiql‘l

— @l +iQuiHiQbf +iQ b (3.11)

with Q) = %(qw +igq,). To disentangle the operators I will use the Trotter-Suzuki formula:
eAtB — gAeBe—3lA B}, (3.12)

applicable under condition [A,[A, B]] = [B,[A,B]] = 0. I have [agﬂ,bgﬂ] = 0, and
[iQ*a7,iQa;] = |Q|?* and also [iQb] ,iQ*b;] = |Q|?, so the conditions for the applicability

of the formula are satisfied for each pair of operators. I can now write

i@ af +iQa1+iQbT +iQ b1 _ QI 4iQ”af ,iQa1 LiQbY LiQ"b1 (3.13)
Analogously, only with the exception to sign in the exponent, I can write for the second
particle (second term in the sum (3.9)):

e~iars — o—|Q ~iQ"af ,~iQas ,—iQbT —iQ b2 (3.14)

Let us continue with the first particle. I need to calculate the element

M, = (ile” QP giQ ey ezQaleinreiQ*blm
1

[ \m Ingim !

X (00\bm1anle QP giQ"at i@  iQu1 ¢iQ" b (a)™ (7)™ |00) (3.15)

(there has been a slight rearrangement of order of operators - I can do that, since operators

a and b commute). The unit operator

o oo
= Z Z ‘p1p2 p2p1

P1=0p2=0 p1=0 :02=0

[c o IENNe o)

)7t (b7)72(00)(00] (b1)"* (a1)™
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I will also unfold the exponential operators in Taylor series, e.g:

elQar — i (ZQ)Saf (3.16)

|
s=0 S:

In this notation it is now clear that the indices p; and ps can change only from 0 to
min(n,n}) and from 0 to min(mq, m}), respectively. This is due to the fact that whenever
these upper limits are exceeded, there will occur a situation when the lowering operator a
or b will act on the lowest oscillator mode, giving zero as a result. Moreover, the matrix

element will be nonzero only for certain powers of operators a, a™, b and b*:

1 min(n,n}) min(mi,m}) e_|Q|2

M, = )

ni!mingtmi! pi=o om0 D1lpo!

(3.17)

X

L (O \—m ' -\, —pa '
(o0t I a0 ) 00)
N ni1—p1 Y()*\M1—p2
((:z?)_ p1)! () ((eri )_ p2)! (bu)™ 77 (e )™ (67)™ [00)-

x {00](b1)*(a1)”
From the above formula it can be seen why I chose these particular terms from the Taylor
expansion of exponents - right now the operators are aligned exactly to take the state
from |00) on the right-hand side to |njm}) (or |nym,)) and back. This is also why the
application of all these operators will result simply in multiplicative term n)!m/!n;!m,!.

This is in accordance to the rules of application of the raising and lowering operators, laid

out in Eq. (2.15). As a result one obtains:

min(ni,n}) min(mi,m})

M= e 2 am PRGDCICHE)

X(1Q°)" P Q)™ P2 (1Q)" T (7).
The matrix element for the second particle, M, can be calculated analogously, and will
look similarly to M;, only wherever I have the imaginary constant ¢ in M;, I will have
(—1) in M,. The formula for M, will also contain new indices of summation, ps and py.

Now I am able to put all the elements together and calculate

o 1 [e%s) 2 47
(ij|v|kl) = 4—7r2/o qdq 5 dqbq?MlMg
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1 mm%’nl) <TL1) (n )
= P1-
\/n’l!m’llnllmlln’zlmg!nglmgl p1=0 P/ \P1

min(m1,m}) Tn,1 my min(nz,n’) TL2 Ny min(ma,m,) m,2 My
p2=0 D2 D2 p3=0 D3 p4=0 D4 Py

1
X ;Impzpspu (3'19)

where the integral

OO o 1=D1 (;()\ML—P2 (5()\P1—P1 (;()*\ M1 —DP2
Ips = [ da [ dgge 297 (GQ ) (1Q)™ P (1Q) (i)™

X (—iQ*)"2 P (—iQ)™2 TP (—iQ) 2P (—i Q)™ P, (3.20)
To solve this integral I take the following steps:

1. Change of variables: 1 have @ = %(qw +igy). Let us write ) in the exponential

form: Q = |Q|e% = qe“ﬁ‘l I want then to set |Q] = so dg = d|Q\§. The

\/§Qa
angle is not affected. Further I drop the modulus sign by |Q)|.

2. Collect the moduli of @ (not including the sign) - I get

Qn’l +m} +n1+mi+nh+mh+na+me—2p1 —2p2—2p3—2pa.
I

3. Collect the phases of @ - I get e’®a(=mitmitm—mi—nytmy+ny—ma)

4. Collect the imaginary units ¢. I pick up all imaginary units (not including the sign)

and I get ( )n T+m +ni+mi+ny+mh+na+me—2p1 —2p2—2p3— 2p4

5. And finally collect the factors (—1) appearing for the second particle - I get (—1)"2FmaFn2t+mz—2ps—

! ! .
= (—1)m2tm2tm2tm2 hecause the other two terms in exponent are even.

My integral separates now into two integrals - the one over () and the one over ¢,. Let
us carry out the second one first. I get

27r N ! 7 ! !
i d¢qez¢q(—n1+m1+n1—m1—n2+m2+n2—m2) — 27T6RL,R37 (3_21)
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where Ry = (m} + mj) — (n} + n}) is the angular momentum of the pair of particles
on the left hand side of the matrix element (particles on orbitals i and j), and Rp =
(m1 4+ mg) — (n1 + ng) is the angular momentum of the pair on the right side (particles
on orbitals k£ and [). I have formally obtained the angular momentum conservation
rule.

From this rule I also obtain the identity ny + ne +m}| + mb = n{ +nl +my + ms. It
means that the long sums in the exponents of () and i can be written as n| + n}, + m} +
My +n1+12+mi+ma —2p1 — 2py — 2p3 —2ps = 2(n +nhy+my +My—pL—P2—P3 —Pa) = 2p.

Now the integral

27T\/§ * - 1\? nh,+ml+na+m
Ip1p2p3p4 = T/0 dQe 2Q2(2Q)2p (__) (_1) o tMmy+na+ma (322)

2
(in passing I multiplied and divided by 27). Let us do another change of variables: =z =

2Q?, so that dz = 4QdQ and dQ = 2. T get

I — f (_1)10 (_1)n’2+m’2+n2+m2 /oo dme—x(x)p—l—lﬂ—l
pip2p3pa T E 2 0

m 1\? nh+mh+na+m
_ Z<_§> (=1 tmetnatmap () 41 /9). (3.23)

The symbol I' denotes the Gamma function, which is the generalised factorial [1]. Now I

can collect everything together.
Sk, R (_1)n’2+m’2+n2+Tn2

1
€\ Jrdimd I i tnb I Ity

min(ni,n}) n, ny min(my,m]) m' my
p1=0 b1/ \DP1 pa—=0 D2 ) \ D2
min(ng,n}) min(mz,m}) !
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x (—= | T - . 3.24
( 2) (p T 2) (3:24)

As can be seen, the Coulomb scattering matrix element in the harmonic-oscillator

(n'lm'l,n'Zm'2|v\n2m2,n1m1> =

basis can be expressed as a sum of generalised factorials. Let us write out explicitly some

of these elements. The most important one is the one with all indices equal to 0, i.e.,

o

(00, 00|v|00, 00) = f = F, = (3.25)

%
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Here & is the unit of exchange energy on the lowest Landau level, defined as

e V2
Eo =Y (00,0m[v]00, 0m) = 7” (3.26)

m=0
I choose the quantity Ey as the unit of Coulomb energy, and express all other Coulomb
matrix elements in its terms. For example,

(00,01|v|01,00) = 0.75Ey;

(00,01|v]00,01) = 0.25E.
The first of these two elements is the direct Coulomb term describing the repulsion of
two electrons, one occupying the orbital (n,m) = (0,0), and the other - the orbital
(n,m) = (0,1). This repulsion term is always nonzero, even if these electrons have
opposite spins. However, the second element describes the Coulomb exchange between
the two electrons, and it is nonzero only if the electrons have parallel spins. These spin
selection rules directly follow from the form of the matrix element shown e.g. in Eq. (3.5).
The spin of the two “inner” orbitals (the ones described by j and k) must be the same,
since these orbitals are integrated with respect to the same variable ry. Difference in
spins would lead to orthogonality of these orbitals, and would cause the matrix element
to be zero. The same is true for the two “outer” orbitals (the ones described by i and ).
These spin selection rules introduce another important symmetry of the Coulomb matrix
elements. Not only do they conserve the total angular momentum of the two scattered
particles, but also they conserve the z component of their total spin.

Here I shall also point out that the elements depend on the magnetic field only through
the length ¢ in the constant Ej. This is clearly a multiplicative constant, and Coulomb
matrix elements in different magnetic fields and in potentials with different characteristic
frequency wy can be obtained by a simple rescaling. The fact that they do not have to be
recalculated for each magnetic field and each potential makes these matrix elements very
useful in large-scale calculations, as I shall demonstrate later in this work.

The last remark concerns the numerical stability of the elements (i, j|v|k,[). As can

be seen from Eq. (3.24), these elements are long sums of factorials with alternating signs.
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For higher harmonic-oscillator orbitals most of these factorial terms become very large
in magnitude, but they have to reduce to a final value of order of 1 (and in practice
even smaller, since the element (00, 00|v|00,00) has the largest value of all the Coulomb
elements). Since the present-day computers can only store a finite amount of significant
digits per number, the matrix elements involving higher and higher orbitals will carry
greater and greater error. Interestingly, the accumulation of this error tends to lower
the total energy of the system. To avoid this spurious result, the matrix elements must
be calculated using computers with higher precision capabilities (for instance, quadruple
precision) or software packages capable of processing numbers with arbitrary precision
(such as Mathematica or Maple). In my calculations I have used the C++ high-precision

package called NTL, written by Victor Shoup [113].

3.2 The Hartree-Fock method

In Chapter 2 I have discussed the single-particle spectra of typical QD potentials, and in
the previous Section I have shown how the Coulomb scattering matrix elements can be
calculated for one of them - the parabolic lateral confinement. At this point all terms
of the Hamiltonian (3.2), describing the system of many interacting particles confined
in a QD, are known, and I may start analysing the properties of this system. However,
as I have already mentioned, the many-body problem defined by the Hamiltonian (3.2)
is very difficult to solve, and special methods have to be developed in order to account
for all aspects of the Coulomb interactions. The rest of this Chapter will be devoted to
describing these methods in detail.

I start the presentation of methods with the mean-field Hartree-Fock approximation.
This effective mean-field approach accounts for the direct and exchange Coulomb inter-
actions, but does not capture the correlation effects. In spite of that this method is of

interest, for two main reasons. First, its results can be compared to those obtained using
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more sophisticated approaches, which allows to isolate the effects introduced by corre-
lations from those due to the direct and exchange terms. The second reason has to do
with the form in which I write the exact eigenstates of my interacting system. In the
beginning of this Chapter I have mentioned that the exact eigenstates of the Hamiltonian
(3.2) can be written as linear combinations of configurations ¢, ¢ ,, ... ¢}, |0), created
using the single-particle orbitals. In the regime of strong interactions I deal with strong
configuration mixing, which causes these linear combinations to involve many terms. How-
ever, instead of distributing the particles on single-particle orbitals, I can also build my
configurations by distributing the quasiparticles dressed in interactions on the effective
Hartree-Fock orbitals. Since these orbitals already partially account for Coulomb inter-
actions, the configuration mixing in this case is weaker, and one may expect that good
approximations of the eigenstates of the system will take the form of linear combinations
with fewer terms.

The Hartree-Fock approximation is usually formulated in real space, and involves
self-consistent solving for the renormalised orbitals of each electron in the presence of
the external confinement and the effective potential created by the Coulomb direct and
exchange interactions with all other electrons [19]. In my approach I use the language
of creation operators, and write the wave function of the N-electron system as a single

Slater determinant in the following form:
W) = Af AT .. Af10). (3.27)

The operators A;" create a particle on the Hartree-Fock orbital i, and can be written in

terms of the single-particle creation operators as
A=Y aPct. (3.28)
jo

The complex coefficients a') are variational parameters of the procedure. They are cho-

Jo

sen so as to minimise the expectation value (¥|H|¥) of the Hamiltonian 3.2 under two
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constraints: (i) that the state |¥) be normalised, and (ii) that the operators A;, A satisfy
the Fermionic anticommutation rules.

In general, the Hartree-Fock operators defined in Eq. (3.28) can involve the single-
particle creation operators of all orbitals j and both spin orientations. This approach
is called the spin- and space-unrestricted Hartree-Fock method [17, 133, 134]. However,
since the Hamiltonian (3.2) conserves both total angular momentum and projection of the
total spin, in my calculations I use the spin- and space-restricted Hartree-Fock approach,
in which the creation operators A" are written using the single-particle creation operators
¢t with the same angular momentum and spin. For the parabolic potential the single-

particle angular momentum [ = n — m, and, for [ <0,
Az?ll_a = ag,(i)l,ac(tfl,cf + aI,((Z)flql—l),act(fl—H),a + a;,(z)fH—Q),ac;—,(fl—FQ),a +.. (329)

For positive angular momenta the Hartree-Fock creation operators take a similar form:

Ay, = aZE)Z,)UC?,—O,U + a:l(—ll—)l),l,aca—i—l),l,a + azl(—li—)Q),Q,aca—i-Q),Z,a +.. (3.30)

Thus, the Hartree-Fock orbitals can renormalise only within a defined angular momentum
and spin channel.

The coeflicients a,,  are determined by minimising the expectation value (U|H |¥) of
the many-body Hamiltonian. In the case of the spin- and space-restricted Hartree-Fock
approach formulated in the language of creation operators, the minimisation procedure
can be reduced to an eigenvalue problem of the Hartree-Fock Hamiltonian for each angular
momentum-spin channel separately. I shall describe this procedure in detail in Chapter 5,

where I use the Hartree-Fock approximation to analyse the properties of a N-electron

parabolic quantum dot in an external magnetic field.
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3.3 The exact diagonalisation approach

In the previous Section I have presented the Hartree-Fock method, capturing the direct
and exchange Coulomb effects in its treatment of many confined interacting particles. I
shall now move on to presenting a method that accounts for all aspects of Coulomb in-
teractions, including electronic correlations, in an eract manner with controlled accuracy.
This is the exact diagonalisation approach, formulated in the configuration-interaction
framework.

In the configuration interaction (CI) method the Hamiltonian (3.2) is written in the
matrix form in the basis of many-electron configurations. Unlike the correlated bases of
Jastrow or Hylleraas functions, the configurations making up the basis do not include
correlations among pairs of interacting particles, and so their repulsive interaction is not
minimised. As a result, the choice and size of the CI basis affects the accuracy of the
results, and, to obtain well-converged eigenenergies and eigenstates, it is usually necessary
to consider very large basis sets.

In this Section I shall focus on the CI method applied to the system of N electrons
confined in a parabolic quantum dot. My description starts with the choice of the many-
particle basis. I shall consider two such bases, one built by distributing electrons on single-
particle orbitals, and the second obtained by distributing quasiparticles on the Hartree-
Fock orbitals. Then I shall move on to writing the Hamiltonian matrix in the chosen
basis. I will show how the geometrical and dynamical symmetries of the single particle
states, as well as the many-particle symmetries of the Hamiltonian can be exploited in
order to divide the basis set into smaller, uncoupled subsets. This will allow for a reduced
basis size and improved accuracy, which in turn allows for more reliable computations of
many-body properties of my system in the regime of strong correlations. But, even using
these reduced and optimised basis sets, the size of Hamiltonians that I need to consider
is still very large (even of order of 10° x 10°). Such matrices cannot be directly stored

in the memory of the present-day computers, and special methods have to be developed
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to diagonalise them. One such method - the conjugate gradient approach coupled with

spectrum folding - will be presented in detail.

3.3.1 Notation and choice of basis

Configurations built out of single-particle orbitals

For clarity of the discussion let us start with rewriting the Hamiltonian of the system of

N interacting electrons:

10 jo

N 1
H =Y E(i,0)c}ci, + 3 > (io, jo'|Vkd', loyc el icrorcio. (3.31)

io ijkloo’
Because I shall now concentrate on the case of parabolic lateral confinement, the composite
index i denotes the single-particle Fock-Darwin orbital quantum numbers (n, m).
I construct the basis of my many-particle Hilbert space out of electronic configurations
by distributing my N electrons on the single-particle Fock-Darwin states in all possible
ways, however obeying the Pauli exclusion principle. In the language of creation operators

compatible with the Hamiltonian (3.31), such configurations will take the form:

o Co co.of |0). (3.32)

\nlmlol, NoMeo09, . . ., nNmNaN> = cn1m101 NaMa o) -Chymyon

Such configurations are orthonormal, because the single-particle Fock-Darwin orbitals are
orthonormal. The only question concerns the size of this basis.

As I have shown in Section 2.1, the single-particle Fock-Darwin spectrum consists of
an infinite number of levels. To be able to perform computations, I thus need to restrict
the basis size, similarly as I did in Section 2.2.2: Out of the infinite number of the Fock-
Darwin states I only choose a finite number M of those with the lowest energies. In the
simple case of the single electron confined in a disk in a magnetic field T only needed
a small number of such states (in my model 20), but I clearly stated that such a fast
convergence was due to the strong zero-field quantisation brought about by the small

size of the disk. Here I deal with the parabolic potential, much softer compared to that



CHAPTER 3. METHODS OF ANALYSIS... 86

of the disk, and I need to compare the quantisation of the single-particle energy to the
characteristic energies of the Coulomb interactions. As I shall show in the next Chapter,
these two energy scales are comparable, which makes it necessary to consider more single-
particle levels in order to obtain a well-converged result. I shall treat the number M as a
parameter controlling my approximation - the only approximation in the method.

Let us now find the size of the many-particle basis. I have N electrons, of which N;
with spin up and N with spin down, and I have to distribute them on M single-particle
orbitals. Since all M single-particle states are degenerate with respect to the electron

spin, the full basis size is obtained as a product

basis size = (1 | (M (3.33)
asis size = N\, .

in which I simply consider distributing the spin up electrons and the spin down electrons
on M levels independently (one electron of each species can occupy the same Fock-Darwin

orbital).

Configurations built out of the Hartree-Fock orbitals

The configurations constructed in the previous paragraph are Slater determinants built
out of single-particle orbitals, and thus they do not include correlations between pairs of
particles. Thus the particle-particle Coulomb repulsion is not minimised, which results
in large diagonal and offdiagonal Hamiltonian matrix elements. This in turn entails the
necessity of using very large basis sets in order to obtain accurate results.

Here I shall describe a different method of constructing the many-particle basis set:
instead of distributing the electrons on the single-particle orbitals, I shall distribute the
quasielectrons on the Hartree-Fock orbitals.

In Section 3.2, I have described the Hartree-Fock approximation in the language of

effective creation and annihilation operators. In the space- and spin-restricted version of
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the method these operators are written as

+ (1) A+ *(1) + *(1) +

Alla - a’n,m,acn,m,a + a’n+1,m+1,dcn+1,m+1,a + a’n+2,m+2,acn+2,m+2,a T+ (334)
+ (2 o+ *(2) + *(2) +

A2la - a’n,m,acn,m,a + a’n+1,m+1,dcn+1,m+1,a + a’n+2,m+2,acn+2,m+2,a T+ (335)
+  _ x(3) .+ *(3) + *(3) +

A3la - a’n,m,acn,m,o + a’n+1,m+1,ocn+1,m+1,a + a’n+2,m+2,acn—|—2,m+2,o +... (336)

with the angular momentum [ = n — m, and coefficients a established in the Hartree-
Fock minimisation. For each angular momentum and spin channel there is one-to-one
correspondence between the effective creation operators A' (and the effective annihila-
tion operators A) and the Fock-Darwin creation and annihilation operators ¢t and ¢,
respectively. The transformation between one set of operators and the other can be seen
simply as a rotation, and let us denote the rotation matrix as Uy: Aj, = ¥, Uie (4, )¢,
This matrix may, in general, be different for each angular momentum and spin channel.
Moreover, the operators A™ and A can be constructed not only for occupied, but also for
unoccupied orbitals. This operation is outside of the Hartree-Fock procedure itself; the
corresponding sets of coefficients a are the eigenvectors obtained in the diagonalisation of
the Hartree-Fock matrices for all angular momentum and spin channels (including those
that do not contain electrons).

By performing the rotation U, I create a new, effective single-quasiparticle basis set,
whose orbitals account for the direct and exchange interactions in the system. It is
therefore advantageous to build my many-particle configurations in the new basis.

The construction of the many-particle basis set proceeds as follows. First I perform the
Hartree-Fock procedure to find the Hartree-Fock ground state |¥), thereby establishing
the rotation matrices U,,. Then I write my many-body Hamiltonian in the language of

the effective creation and annihilation operators:

A~

H = Y thorio A Ario (3.37)

k' o

k,
1
' ' + A
+ o5 2 2 D Akloy kalao'|Vikslso!, kalso) ALy, o Al Akstior Akatac
kik2k3zka l112l3l4 00’



CHAPTER 3. METHODS OF ANALYSIS... 88

Note that in the basis of the effective Hartree-Fock orbitals the energy term ¢ is not
diagonal, but couples different orbitals within the same angular momentum and spin

channel. The Coulomb matrix elements in the new basis are obtained by a rotation:

<k1l1, leQ‘V|k3l3, k4l4> = Z Z Z Z <’I’le1, n2m2|V\n3m3, n4m4> (338)

Nn1MmMm1 N2M2 N3M3 N4Mm4q
x Uy (ki, (nama))Us, (Ko, (n2ma)) Uy (ks, (nama)) Uyl (ka, (nama)).
The summation over the Fock-Darwin indices (nm) is done under constraints ny —my = [y,
No — mg = ly, ng — m3 = I3 and ny — my = l4. At this point both the effective single-
particle basis and the rotated Hamiltonian are known. I can proceed to distributing my

quasiparticles on the Hartree-Fock orbitals and creating the configurations of the type

\klllal, k2l20'2, ceey kNlNUN> = Al—;l1(71A+ A+ ‘0> (339)

kolooo * ° * kNlNG'N

From this moment on, creation of the many-particle basis and diagonalisation of the
Hamiltonian is carried out exactly in the same way as it is done for the case of non-
renormalised single-particle orbitals.

An alternative way of constructing the manyparticle basis set is to start with the
Hartree-Fock ground state |¥) and construct the basis vectors as quasielectron-quasihole
pair excitations from this state. For example, the single-pair excitations are created as
configurations of the type

A;:lllo'AkZZZUI |\Ij>’

and can be constructed either with (o # ¢') or without (¢ = ¢’) flipping the spin of the
quasiparticle. Such excitations are thus obtained from the Hartree-Fock ground state by
taking one quasiparticle (electron dressed in interactions) from below the Fermi energy,
which creates a hole in the interior of the electronic droplet. The quasielectron is then
put on one of the unoccupied Hartree-Fock orbitals above the Fermi energy. In this
way I can create two- and multiple-pair excitations. Note that this approach allows to
isolate the lower-lying excitations (two- and three-pair) from higher-lying ones (multiple-

pair). In the exact-diagonalisation procedure the largest corrections to the energy of the
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system are introduced by those basis states that are closest in energy to the ground state,
as I have demonstrated in Section 2.2.2 on the example of the single-particle spectrum.
Therefore it is advantageous to build my basis set from the vectors describing the few-pair
excitations, as being more relevant for the accuracy of the result, and neglect the higher-
pair excitations. I shall demonstrate the details of this procedure in Chapter 5, where I
shall use the Hartree-Fock and exact diagonalisation methods to analyse the properties
of the system of interacting electrons confined in a parabolic QD in an external magnetic

field.

3.3.2 Exact diagonalisation method optimised for parabolic lat-

eral confinements

From the formula (3.33) it is clear that this size grows factorially both with the number
of single-particle states M and the number of electrons N. For instance, if I take six
electrons, with Ny = 3 and N| = 3, and distribute them in all possible ways on M = 20
orbitals, the total basis size is 1299600. This means that without further refinement I am
unable to obtain any meaningful results with this method.

The optimisation of the basis set involves exploiting the symmetries of the system.
I have demonstrated this idea at work already in Section 2.2.2, where I isolated subsets
of the basis with definite angular momentum and definite vertical quantum number, and
demonstrated that the Hamiltonian does not couple them. Because of that I could resolve
the angular momentum-subband channels, and I performed the diagonalisation study in
each such channel.

In the case of the many-particle system in the parabolic confinement I also have several
symmetries, leading to a block-diagonal form of the Hamiltonian in the full configuration
basis. The total Hamiltonian (3.31) in the basis of configurations built out of harmonic-

oscillator single-particle basis conserves the total angular momentum L, total spin S, and
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total spin projection S, of the system, and therefore I may classify the many-particle
configurations into groups labelled by these three quantum numbers. The same is true
for the Hamiltonian (3.38) in the basis of configurations built out of the effective Hartree-
Fock orbitals calculated in the spin- and space-restricted approach. However, out of these
two Hamiltonians only the first one exhibits an additional symmetry, stemming from the
parabolic form of the confinement: it couples only the states with the same type of the
centre-of-mass motion. This additional, fourth good quantum number allows to optimise
the harmonic-oscillator many-particle basis set better than the one based on Hartree-Fock
orbitals, and therefore in the rest of this Section I will focus on the former.

A detailed discussion of the optimisation steps applied to the many-particle basis set
on the specific example of an N -electron parabolic quantum dot in a magnetic field
is presented in the article “Configuration interaction method for Fock-Darwin states”,
written by Andreas Wensauer, Marek Korkusinski, and Pawel Hawrylak, and published
in Solid State Communications, vol. 130, page 115 (2004). This publication is an integral
part of this thesis and is appended to the presented material. Here I will highlight its

most important points.

Angular momentum

Let us start with the conservation of total angular momentum. The total angular mo-

mentum operator is defined as

L=> (n—m)et,.Ccnmo- (3.40)

Since the parabolic confinement is circularly symmetric, each single-particle orbital has
a definite angular momentum, and therefore the operator L commutes with the single-
particle energy term (consisting of the kinetic energy operator and the external con-
finement potential) of the Hamiltonian (3.31). Moreover, as I have demonstrated in Sec-

tion 3.1.2, the Coulomb interactions conserve the total angular momentum of the scattered
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pair of particles. Thus the operator L commutes also with the interaction term in this
Hamiltonian. This allows me to group my basis configurations into subspaces according

to the total angular momentum.

Projection of the total spin

The second symmetry is the projection of the total spin S,, whose corresponding operator

is defined as:

S, = Z act Come- (3.41)

nmao

In the Hamiltonian (3.31) there is only one term that couples to the spin of each electron:
the single-particle Zeeman term in the single-particle energy operator. The Zeeman term,
however, does not lead to spin flips, but lowers or increases the energy of a single-particle
orbital depending on the magnetic field and the direction of the electronic spin. This
means that the operator S, commutes with the total Hamiltonian, and all the configu-
rations from each angular momentum subspace can be further grouped according to the

value of their total spin projection S,.

Total spin

Accounting for the conservation of the total spin S of the system is more complicated. The
total spin is a vector quantity, and to simplify my description I will focus on its square:
the operator 52, This operator, written in the language of creation and annihilation

operators for N confined electrons, takes the form

A N A
52 - 5 + Sz2 — Z C;—TC;-EC]'\LCZ'T. (342)
tJ

The two first terms of the operator S2 are diagonal, and give the same values for all the N-
electron configurations from the same angular-momentum and S,-resolved basis set. The

third term, however, couples many-particle configurations in such a way that it annihilates

the particle on the orbital 7 and recreates it on the same orbital with the flipped spin;
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the same is true for particle j. Note that for the two configurations to be coupled by SQ,
they have to exhibit the same pattern of orbital quantum numbers, and only differ in the
way the spin-up and spin-down electrons are distributed on these orbitals. For example,
the operator S? couples the configuration |a) = cdy.cfy, [0) to [b) = cfi,cdy,[0), but none
of these configurations is coupled to |c¢) = cfyy¢43,]0). Therefore it is possible to arrange
the many-particle configurations into blocks with the same orbital pattern. I can then
construct the matrix S2 in the basis of each of these blocks and diagonalise it numerically
to obtain the eigenstates of the total spin operator. For example, in the basis of my two

configurations {|a),|b)} the matrix of the operator 52 takes the form
S? = : (3.43)

and, upon the diagonalisation of this simple matrix one obtains the eigenstate |S) =
% (la) + |b)) with the eigenvalue S? = 0, and the eigenstate |T) = % (la) — |b)) with
the eigenvalue S? = 2. The first eigenstate is the spin singlet, and the second - the spin
triplet. To enumerate these states, usually the eigenvalue of the total spin is used instead

of the eigenvalue of 52; these two eigenvalues are connected via the relationship
(8%) = 5(S +1). (3.44)

This means that the eigenvalue corresponding to the state |S) is S = 0, and the one
corresponding to the state |T") is S = 1. The rotation to the basis of total spin eigen-
vectors becomes increasingly more complicated as the number of particles increases. The
spin blocks are, however, fairly small, and are composed, e.g., of up to several hundred
configurations for the system with N = 6 electrons. From this simple analysis it is clear
that the many-particle basis with resolved total angular momentum, total spin, and total
projection of the total spin will no longer consist of many-particle configurations, but will
be composed of their linear combinations.

To illustrate how resolving the total spin as a good quantum number decreases the

size of the many-particle basis, let us consider the system of N = 6 electrons, out of
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which N4 = 3 are spin up and N| = 3, distributed on the M = 121 single-particle orbitals
(n,m), for which 0 < n < 10 and 0 < m < 10. According to the formula (3.33), by
distributing these electrons on these single-particle orbitals more than 8.29 x 10'° many-
particle configurations can be generated. Out of those configurations there are 326120
configurations with total angular momentum L = 0. Further, if I resolve the total spin as a
good quantum number, I obtain 92410 configurations with S = 0, 152460 configurations
with S = 1, 70711 configurations with S = 2, and 10593 configurations with S = 3.
Therefore, by resolving the two quantum numbers L and S I have reduced the size of the

problem of six electrons with total spin projection S, = 0 by five orders of magnitude.

Centre of mass

Let us now move on to describing the last symmetry, involving the centre-of-mass (CM)
motion of the system. The parabolic confinement allows for a separation of the CM and
relative motion of NV interacting confined electrons, and so the real-space Hamiltonian of

the system can be written as [51, 62]:
H= I:ICM(R; P) + ﬁrel(@l, s ON=1,T1, o, TN_1). (3.45)

Here, NR = YN  r;and P = ¥, p; are the CM coordinate and momentum, respectively,
and p;, m; are, respectively, the position and momentum of the i-th relative particle, which
can be written using Jacobi coordinates [62]. In the following I shall focus on the CM

Hamiltonian, which, when written in the real-space representation, takes the form:

Hen =

1 1 1
P2+ -Nm* 242 P|,. .
SN + 5 Vm wpR” + o R x PJ, (3.46)

The notation used in this formula follows that introduced in the Section 2.1. I can
now express the CM position and momentum by the single-particle raising and lowering

operators a*, b*, a, and b, and write the CM Hamiltonian in the second quantisation as:

i 1 1
Hens = oy (A¢A+ + 5) + (A+A_ + 5) , (3.47)
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where the operators AT, A;, A*, and A_ are bosonic operators describing collective CM

excitations of the system:

AT = \/_ > Vn+ 1c(n+1 o Cnma’ (3.48)

AT = \/_ Z\/ + 1¢ (m-+1)0 Crmo (3.49)

A, = Z VI 1) Crme (3.50)

’Ilmﬂ'

A = vme! o Came- 3.51
7 & Vi (851)

These operators can be interpreted respectively as creation and annihilation operators for
collective excitations of the system. The operator AT (A, ) increases (decreases) the total
energy of the system by fiw,, while the operator AT (A_) increases (decreases) the total
energy of the system by Aiw_. Note that these operators do not couple to the interaction
term in the many-particle Hamiltonian. The CM operators can be now constructed using
the four operators defined above as:

R 1 /
C_|_ = AiA_}_ = N Z n(nl + 1)6?;;’—1—1)711’0’c”'m'U'cEtz—l)mocnmUﬂ (352)

n'm’d’'nmo

R 1 /
C. = AtA = N Z m(m/ + 1)0;;(7]'),’-'_1)0-’Cn'm’O”C;L'—(m—l)g'can" (353)

n'm!/o'nmao
These two operators commute with the total Hamiltonian.

Let us focus, for example, on the operator C_. Note that this operator affects only the
pattern of orbital quantum numbers m, leaving the number n of each electron unchanged.
Therefore, similarly to the case of the total spin, I can arrange the configurations into
blocks. The configurations belonging to each block have the same pattern of quantum
numbers no, but differ in the patterns of the numbers m. To resolve the CM quantum
numbers I build the matrix corresponding to the operator C_ in each block and diagonalise
it numerically. As a result I obtain the eigenvectors of the total centre-of-mass operator,
together with the corresponding CM quantum numbers. For further processing it is
sufficient to collect only those CM eigenstates with CM eigenvalues equal to zero; all

other eigenstates can be generated simply by application of the CM raising operator A*.
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In the paper we apply the basis reduction rules discussed in this Section to a model
case of N = 4 — 7 interacting electrons confined by a parabolic potential in the absence of
the magnetic field, and N = 4 electrons in the magnetic field. We show that the obtained
results compare well with those obtained using the quantum Monte Carlo and stochastic-
variational methods. We also point out that use of the optimised configuration-interaction
approach allows to calculate reliably not only the ground state, but also the excited states

of the system, an ability which the two other methods lack.

3.3.3 Creation of the Hamiltonian matrix

I have demonstrated how I create the basis of configurations and how I can optimise it
to account for the symmetries of the system. Let us now move on to describing how the
Hamiltonian is written in the matrix form in this basis.

I will describe the creation of the Hamiltonian matrix on a simple example of the
system of N = 3 electrons, two with spin down and one with spin up. I shall restrict
the number of the single-particle Fock-Darwin states available for my electrons to three:
(n,m) = (0,0), (n,m) = (0,1), and (n,m) = (1,0). According to Eq. (3.33), in this case
I can generate nine electronic configurations with different angular momenta. To optimise
this basis I focus on the states with total angular momentum L = —1 only. This reduces

my set to two configurations:

) = ¢g0,4€01,,C00,410); (3.54)

|b> = 0&17¢CI05¢6&15T|0>' (355)

Note that in writing these two configurations I am using a convention, to which I shall
adhere throughout this work: from left to right I write the creation operators first for
spin-down, and then for spin-up electrons, and for each spin species I arrange the orbitals
according to their energy in ascending order.

The configuration |a) is composed of two electrons with antiparallel spins occupying
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the orbital (0,0) and one spin-down electron on the orbital (0,1). The configuration |b),
on the other hand, consists of two electrons with antiparallel spins on the orbital (0,1) and
one spin-down electron on the orbital (1,0). Both configurations have total spin S = 1/2,
so my basis set {|a), |b)} is already composed of total spin eigenstates.

In my simple basis the Hamiltonian can be written as a 2 X 2 matrix in the following

form:
. a/Hl|a) (a|H|b
H:<||><||)' (3.56)
(b|H|a) (b|H]b)
My task is to calculate the matrix elements (a|H|a), (a|H|b) = (b|H|a)*, and (b|H |b)
using the form of the Hamiltonian as in Eq. (3.31). To simplify the description, I shall

write the total Hamiltonian as a sum of two operators:

A

H=T+ H, (3.57)

where T is the single-particle energy operator, describing the motion of each particle in
the external confinement of the nanostructure, and H¢ is the Coulomb operator. I shall

calculate the matrix elements of each of these two operators separately.

Single-particle energy operator

The single-particle energy operator written using the Fock-Darwin creation and annihila-

tion operators takes the form:

A

T =Y E(n,m,o)c; ,Cumo- (3.58)

nmao
Let us calculate in detail the matrix element T,, = (a|T|a).
Toa = Y E(n,m,0)(0]co,0,+¢0,1,1€0,0,4 |Chmo Crme €50, 1 €11 C10.410) - (3.59)
nmao
This matrix element has a form of a sum over the single-particle indices nmo. Note that
the operator ¢ Cume = Nume 1S @ number operator, returning the number of electrons

on the orbital nmo. Therefore the only nonzero terms in this sum will be those with the
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indices nmo corresponding to the indices of one of the creation operators in the state |a);

other orbitals contain zero electrons. Therefore, in this case

Taa = E(0,0,1)(0lco0,1¢0,1,1¢0,0,4|70,0.1/¢50,¢01,1€50+0)
+ E(0,1,1){0[co,0,+¢0,1,1€0,0,170,1,41€50,,01.,C0.0.410)

+ E(O, 0, T) (O|co,0,¢co,1,¢co,0,¢|n0,0,¢\c&o’icail’icaio,HO). (360)

Since in each case the orbitals defined by the indices of the number operator contain one

electron, all expectation values of 7 will be equal to 1, and the matrix element
Twa = E(0,0,1) + E(0,1,]) + E(0,0,7). (3.61)

Thus, the matrix element 7, is equal to the sum of the single-particle energies of orbitals

occupied by each electron. Similarly one can show that

The off-diagonal matrix elements (a|T'|b) = (b|T|a) involve expectation values of the
type (a|npme|b). Since the number operator 7 cannot redistribute electrons, these ex-
pectation values will be zero. Thus, the single-particle energy operator in my basis is a

diagonal matrix:

~ Taa 0
T = . (3.63)
0 Ty

Note that if the configurations are built out of the Hartree-Fock orbitals instead of the
Fock-Darwin ones, this operator can contain nonzero off-diagonal elements, as can be seen

from the form of the operator 7" in Eq. (3.38).

Coulomb operator

Let us now focus on the Coulomb operator

~ 1 .
Hq = 5 Z (zg|v|kl>c;’c;’ckcl, (3.64)
ijkl
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where the composite index ¢ = nmo; the same applies to j, k, and [. In what follows I
shall make use of the fact that my single-particle basis set is ordered according to the spin
and single-particle energy, so, for instance, the notation £ > [ will mean that the orbital
k is higher up in the single-particle basis than the orbital /.

In the Coulomb operator (3.64) the composite indices run over all available single-
particle orbitals. In particular, I need to consider terms with k£ < [ and k& > [ (the term
with £ = [ is identically zero, since in this case the two annihilation operators would act
on the same orbital).

I shall now demonstrate that I can reduce the number of terms in the sum in Eq. (3.64)
using the Fermionic commutation rules for the operators ¢ and ¢™ written in Eq. (3.4).

Let us focus on the indices k£ and [ first. I can separate the sum into two terms: one
for £ < [, and one for k£ > [:

-1
Ho = ( Y (ijlvlklyel cfever + (z’j\u|k1)c;cj+ckcl) _ (3.65)

i,5.k<l i,3.k>1

In the second term I interchange the two annihilation operators, observing the Fermionic
commutation rules: cxc; = —c¢ci. 1 also rename the dummy indices: £ — [ and [ — k.

This allows me to write the Coulomb operator in the form:

Ao=3 3 (Glolkt) — (i]0]tk)) ¢} e} exer. (3.66)
iy k<l

The first term in this sum is the Coulomb direct element. This matrix element attains a
nonzero value only if the spin of the orbital |i) is the same as that of the orbital |/} and
the spin of the orbital |j) is the same as that of the orbital |k), however, the spin of |7)
can be different than that of |j). The second term in the sum is the Coulomb exchange
element. This matrix element attains a nonzero value only if the scattered particles have

the same spin.
I can perform a similar simplification for orbitals ¢ and j. As a result, I will obtain

another pair of matrix elements, one direct and one exchange, identical to the elements

in Eq. (3.66). Upon their summation the factor 1/2 in front of the sum is eliminated, and
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the final form of the Coulomb operator is
He= Y ((ijlv|kl) — (ij|v|lk)) cf cf erar. (3.67)
i>j,k<l

Let us now calculate the matrix elements of the Coulomb operator He in my ba-
sis {|a), [b)} of the three-electron configurations, starting with the diagonal element

(a|Hcla) = Hee.
Hg =Y ((iglvlkl) — (ijlv|lk)) (0lco0c0,1,1c00,l6 ¢ ereiledo ¢ cio40). (3.68)

i>j,k<l
Note that the element (0|co,0,1¢0,1,4C0,0,4]¢ €] Cri|€go, 01,1 C004]0) can be understood as

the dot product of two vectors:

0), (3.69)

[P R + o4+
¢jCiCo0,,C01,,C0,0,+0) and CkC1C0,0,1C0,1,,C0,0,1

with ¢ > 7 and k£ < [. It is now clear why I chose these boundaries in summation in
Eq. (3.67): in each case, out of the two annihilation operators, the first one (i.e., ¢; and ¢,
respectively) removes an electron created deeper (farther to the right) in the sequence of
operators ¢ as compared to the second annihilation operator (i.e., ¢; and ¢, respectively).
This simplifies the automatic computation of the matrix elements, since I do not have to
check whether a given electron in the configuration has already been removed or not.
Let us now enumerate the possible sets of orbitals 4, j and k, [, for which the vectors
in Eq. (3.69) are nonzero. As for the pair i, j, there are three possibilities. One of them

isi=1(0,1,1), 5 = (0,0,]), which gives

+ o+t o+
CO,O,LCO,1,¢Co,o,¢co,1,¢co,o,¢|0>— Co,o,HO)-

The minus sign in the above expression is a phase factor, originating from the fact that
in order to act with the operator ¢y, I need to reverse the order of this operator and
the first creation operator in the sequence. This introduces the minus sign due to the

Fermionic commutation rules of these operators.
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The second possible pair of orbitals 4, j is ¢ = (0,0,71), 7 = (0,0,J); upon their
application I am left with the vector +car, 1,110). Here the phase factor is positive because
in order to act with ¢y 4, I need to reverse the order of operators twice.

Finally, the third possible pair of orbitals is s = (0,0, 1), 7 = (0, 1,J). Their application
gives —cg o |0), the negative phase being due to the three reversals of operators necessary
to complete it.

Since the second vector in Eq. (3.69) is exactly the same as the first one, the possible
pairs of orbitals k, [ are identical to the pairs ¢, j described above. This gives 3 x 3 =9
possible terms in the sum (3.68). The number of terms is further decreased by considering
the dot products of the vectors from Eq. (3.69) for each combination of orbitals. These
dot products will be nonzero only if the third electron (i.e., the electron that remains
after the application of annihilation operators) is the same on either side. In the case
of diagonal matrix elements of the Coulomb operator, and in particular for the element
Hg*, this happens only if the orbitals ¢ = [ and j = k. Thus the number of nonzero dot

products is reduced to three, and the matrix element

H = ((01,00v]00,01) — (01,00[v|01, 00))

+ {00, 00[v|00, 00) + (00, 01|v01, 00). (3.70)

The term in braces corresponds to the orbitals i = [ = (0,1,]), j = k£ = (0,0,]) and
consists of the direct and exchange elements because the scattered electrons have the
same spins. The two remaining terms in H%* correspond to the two other sets of orbitals
and consist of direct elements only.

In an analogous fashion one can show that the second diagonal matrix element of the

Coulomb operator is

HY = ({10,01|v|01,10) — (10,01|v|10,01))

+ (01,01[v]01,01) + (01,10[v|10,01). (3.71)
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The off-diagonal matrix element I:Igb, on the other hand, consists of only one term:
HE = —(00,00[v[10,01). (3.72)

This term corresponds to the following choice of orbitals: ¢ = (0,0,1), 7 = (0,0,),
k = (1,0,)), L = (0,1,1). It has a negative phase, because the application of operators
c;c; requires two interchanges of operators, and application of the pair ¢ic; requires three

such interchanges. Thus the phase is (—1)?*3 = (-1).

The full Hamiltonian

I am now ready to write my full Hamiltonian matrix in the basis {|a), |b)}:

. Taa + Hoa Hab
(H&) Tw+HY
If T calculate the elements of the single-particle energy operator using the Fock-Darwin

energies, and the elements of the Coulomb operator using the matrix elements (ij|v|kl)

in the harmonic-oscillator basis, the resulting Hamiltonian matrix takes the form:

. 3hw., + 3hw_ + 2.25E, —0.25E
o | 2T ° " , (3.74)

—0.25E, 2hwy + hw_ + 1.875E,

where Ey = y/m/f. The eigenvalues of this simple matrix can be obtained analytically,

and are

v/ (hw, + hw_0.375E)? + 0.25 3

Ey = 2hw, + 3hw_ + 2.0625E, + 5 : (3.75)
v/ (hw, + hw_0.375E)2 + 0.25 3
Ey = 2hw, + 3hw_ + 2.0625E, — . . (3.76)

In this model calculation I assumed a very simple, two-element basis set. Later on I
shall use much larger basis sets of configurations, however in all such cases the rules of
constructing the Hamiltonian matrix remain the same.

The last step of the exact diagonalisation approach involves numerical diagonalisation

of the Hamiltonian matrix. To this end I could use the numerical procedures appropriate
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for full matrices, requiring that the entire matrix be stored in the memory of the com-
puter. This, however, would be limiting, since the matrix of order of about 11000 x 11000
with elements encoded using 8-byte numbers (standard double-precision format) occupies
about 1 gigabyte of memory; I would be thus restricted to the sizes of the basis set no
larger than a few tens of thousands. I am, however, interested in much larger bases, com-
posed of millions of configurations. Processing of such large Hamiltonian matrices can be
accomplished only by exploiting the fact that they are sparse.

A matrix is sparse if the majority of its off-diagonal matrix elements is equal to zero.
In my Hamiltonian the off-diagonal elements can only be due to the Coulomb operator.
This operator has two important properties: each term in the sum (3.67) has to conserve
the angular momentum of the scattered pair of electrons, and the dot product of the
two vectors obtained after the application of operators c;c; and cic; has to be nonzero.
These properties impose stringent conditions on the pairs of vectors that can be coupled
by Hc, and lead to vanishing of typically about 80% of off-diagonal elements. Thus my
Hamiltonian matrix is typically sparse, and I can save the computer memory by storing
only its nonzero elements. This, however, prevents me from using the most popular linear
algebra packages, such as LAPACK [71], since they are not compatible with such a packed
matrix storage. Therefore I need to develop a numerical diagonalisation algorithm which
is designed specifically to handle sparse matrices. I describe two such algorithms in the

next Section.

3.3.4 Diagonalisation of large and sparse matrices

In the previous Section I have shown how I can decrease the size of the many-particle
basis of configurations of N electrons distributed on M single-particle levels by accounting
for the symmetries of the system. But the accuracy of the results of the configuration-
interaction method is still affected by the choice of the cutoff M chosen to limit the

number of single-particle orbitals: in order to obtain reliable results, the number M
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should be as large as possible. Therefore, by exploiting the symmetries of the system I
have not eliminated the problem of large matrices; I just replaced them by ones, whose
diagonalisation will yield results which are much more accurate than those obtained using
the unoptimised basis set of the same size. These matrices still have sizes at least of
105 x 10°, and special techniques must be used to diagonalise them. In my research I
employ the iterative conjugate gradient method combined with spectrum folding. I shall
describe these techniques in this Section.

In discussing the conjugate gradient method of matrix diagonalisation I shall first
focus on a simpler technique - the steepest descent method - in which the entire principle
of iterative minimisation is not obscured by optimisation details. I will assume that the
Hamiltonian matrix H is real and symmetric, which guarantees real eigenvalues. This
applies directly to the many-body problem, since the many-body Hamiltonian matrix is
real in the basis of configurations. The method can, however, be easily generalised to
treat complex Hermitian matrices as well.

Both the steepest descent and the conjugate gradient methods are of iterative nature,
and their general premise is to “generate” a guess vector and then “purify” it according
to some algorithm. This purification process aims at obtaining the exact eigenvector
corresponding to the lowest eigenvalue of H. The process is executed with the constraint
that the vector being processed be normalised to 1.

The steepest descent and conjugate gradient methods presented here are special cases
of the general steepest descent and conjugate gradient methods, which deal with finding
a minimum of a multivariable function. The only thing that makes them special is the
normalisation constraint mentioned before. The general methods are constructed with
the assumption that the user supplies the multidimensional function f(z,zs,...,2y) to
be minimised. The first step is to generate a random starting point (the “guess vector”)
iy = [x§°),x§°), cen x§3)], whose coordinates are chosen using a random number generator.

This point, in general, is away from the minimum of the function f. Now I calculate the
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gradient of the function f at the point j:

. lor o of
Vi (@)la=a, = 0x, O0xs’ 83;N]

(3.77)

i=ilp

This vector shows the direction of the steepest increase of the function, and the vector
—V f(@)|z=a, shows the direction of the steepest descent. I can then take a step of some
length from the point iy along the direction of the steepest descent, and this hopefully
will shift me closer to the global (or local) minimum of the function f. At the new point,
i1, I do the same, i.e., calculate the direction of the steepest descent and take the next
step. I expect that after a sufficiently large number of steps I will descend to the actual
minimum of f. This is the method of the steepest descent.

Sophisticated methods have been developed to calculate the desirable length of the
step mentioned above. Also, sometimes steps are taken not along the direction of the
steepest descent, but along a set of “conjugate” directions. The idea of “conjugacy”
involves creating the next direction of the step based not only on the gradient, but also
on previous step directions. In this way one never steps along the same direction twice.

To better visualise these techniques, let us consider a simple two-dimensional problem
of a long and deep potential valley. My goal is to find the lowest point (minimum) in this
valley, but for now without any normalisation constraints. If I choose a random starting
point, say, on one of the walls of the valley, and then take a step along the direction of
steepest descent, I may end up somewhere on the opposite wall of this valley. If the shape
of the potential valley is strongly asymmetric (the valley is very long and narrow), in
the next iteration I may return close to the starting point (the subsequent directions of
steepest descent will be nearly parallel). I will, most likely, ultimately find a minimum,
but this convergence can take place after a large number of steps. I can limit the number
of steps taken in the steepest descent procedure by imposing additional requirements on
subsequent directions in which I step - make them conjugate. In such procedure, the
first step is always taken along the direction of steepest descent. However, if my function

f depends only on two variables, it is possible to construct a conjugate direction that
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already in the second step of the iteration will take me directly to the minimum of the
function if the function is a quadratic polynomial, or very close to the minimum, if the
function is more complicated. For a detailed description of the general steepest descent
and conjugate gradient methods I refer the reader to Ref. [109].

Now I set out to adopt the technique described above to find the lowest eigenvalue
of the matrix H. To this end I define my function f as the expectation value of the
Hamiltonian in the state |u):

fi@) = (ulHlu), (3.78)

where |u) = @ = [x1,Z9,...,2n]. This vector is understood as a shorthand notation of
a many-particle state of the system. This state is a linear combination of many-particle
configurations, from which I constructed my basis set. To make the notation compact, I
simply retain the coefficients that correspond to each configuration in this combination.
Here T also assumed that the size of the basis, and the dimension of the Hamiltonian H,
is N (in this Section, this symbol does not denote the number of electrons).

Therefore, I have a function of N variables, defined as an expectation value of the
Hamiltonian H, but with the normalisation constraint: (u|u) = z?+z2+...+x% = 1. The
above function is a long sum of terms such as u;u;Hy, so if it was not for the constraint,
it would be a quadratic function in the variables (a quadratic form). The additional
constraint complicates the picture, since one of the variables becomes dependent on all
other variables, and can be eliminated from the function f. However, in this approach
I shall not carry out this elimination explicitly. I will only be interested in finding the
set of variables z1,, 2, ..., xn giving the smallest possible value of the function f, while
still fulfilling the normalisation condition. Note that the minimum thus found does not
necessarily correspond to the unconstrained global minimum of the function f. It is rather
a conditional minimum of f, the condition being, of course, the normalisation. Thus, as
an output from this method I shall obtain the smallest eigenvalue of the matrix H, and

the corresponding eigenvector, and I have reduced the diagonalisation problem to the
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minimisation of a function f.

The reader will find a detailed review of methods, by means of which this problem can
be solved, in Ref. [95]. In this article, Payne et al. describe a wide variety of techniques,
including molecular dynamics, Car-Parinello techniques, etc. Among them I also find the
steepest descend and conjugate gradient approaches, however, Payne et al. give only a
general description of principles on which these methods operate. The specific algorithm
presented in detail in this Section has been created and implemented by the author of
this Thesis.

I have chosen these two methods for an important reason. As I mentioned in the
previous Section, the sizes of Hamiltonian matrices that I typically encounter are of order
of hundreds of thousands, and it is not possible to store these matrices in full form in
computer memory. The two iterative methods are designed to circumvent this obstacle:
they do not require the full matrix H as input, but rather the result of the matrix-vector
multiplication. This gives the user a great flexibility in the choice of matrix storage
mechanism: the user can store only nonzero matrix elements, use some symmetries of the
matrix H characteristic for the problem at hand, or even calculate the matrix elements on
the fly. The fundamental object being processed in each method is the vector itself, and
one needs to provide a workspace consisting of several such vectors. Therefore, one never
handles the object of the size of N x N, only a few objects of the size of N. Unfortunately,
this great advantage comes at a cost: the methods can only calculate one - the lowest -
eigenvalue of the matrix at a time. To obtain other eigenvalues and eigenvectors one needs
to employ additional techniques, such as reorthogonalisation. Later on in this Section I
shall describe one such technique - the spectrum folding method, which is very stable
numerically and simple to implement.

Let us start the presentation with the description of the steepest descent method.

Below I shall enumerate the steps which must be taken in the iterative procedure.

1. As mentioned before, I start with a guess vector |u)o. This vector is generated at
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random, and should not be initialised by assigning identical values to all its entries.
This is because in doing so one might accidentally impose a symmetry on the vector
which is different from the symmetry of the actual eigenvector corresponding to the
lowest eigenvalue. In such situation the procedure might converge to one of the
excited states, which is uncontrollable, and thus discouraged. Omne cannot count
on this phenomenon as a possible way of implementing the finding of the excited
states, because the imposed symmetry can be broken due to the buildup of the
computational error incurred in each iteration. The vector generated at random
will, on the other hand, contain elements of all possible symmetries, and it will be

possible to purify it to the symmetry of the ground state.

Once initialised, the guess vector |u)o should be normalised to 1, so that (u|u) = 1.

Now I can calculate the first value of my function: Ey = f(|u)e) = o{u|H|u)o -

2. Now I need to find the direction of steepest descent. To this end let us make an
explicit use of the fact that the vector |u) must be normalised to 1 at each step
of iteration. Therefore, the next approximation of the eigenvector can be achieved

only by a rotation of the current vector by a certain angle, i.e.,
luy1 = cos(a)|u)o + sin()|g)o, (3.79)

where the auxiliary vector |g)o must be normalised to 1 and orthogonal to |u)o. This
orthogonality is required, because without it I would change the norm of |u): if |g)¢
has a component parallel to |u)o, I would add some length to the vector |u)q, which

must be avoided. To prove that, let us consider explicitely the normalisation:
H{ulu), = cos®(a) o{ulu)y + sin?(a) o{g|g)o + 2sin(a) cos(a) o{g|u)o .  (3.80)

The above norm equals 1 only if both vectors are normalised (from the first two
terms I get cos?(a) + sin®(a) = 1) and orthogonal (the third term vanishes). The

angle o will be defined afterwards, now I will focus on generating the vector |g)o.
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Let us postulate it in the form:
9)0 = (H = EoI)|uo. (3.81)

As defined above, Ey = o(u|H|u)g is the zeroth approximation to the sought energy,
calculated with the guess vector |u)o, and I is the unit matrix. Now I shall prove

that the vector |g)q is orthogonal to |u)g:
o{ulg)o = o(u[H — Eol|u)o = of{u|H|u)o — Eo o(ulu)o = Eo — Ep =0,  (3.82)

from the definition of Ey and because the vector |u)o is normalised to 1.

Let us now use the vector |g)o, henceforth called “gradient”, to rotate the guess
vector |u)o. I have shown how this is accomplished in Eq. (3.79); now I only have
to define the angle . To do that, let us calculate the next approximation to the

eigenvalue:

Ei(a) = 1(u|H|u); = cos?(a)Ey + sin?(a) o{g|H|g)o + 2sin(a) cos(a) o{g|H|u)o -
(3.83)
Note that all matrix-vector multiplications appearing in the above equation can be
carried out explicitely, because the only unknown here is a. I choose its value so
that Fj(«) is minimal, and I can do it analytically by calculating the derivative

dE(o)/da and equating it to zero. I obtain, after elementary calculations,

2 o(g|H|u)o 1 ( 2 o(g|H]u)o
tan(2a) = ; « = —arctan
(20) Eo — o{g|H|g)o 2 Ey — o{9|H|g)o

In reality the trigonometric equation dF;(«)/da = 0 has two solutions in the domain

) . (3.84)

0 < a < 271 « as written above, and « + 7/2; one solution corresponds to the
maximum, and one - to the minimum. I do not know a priori which solution to take.
I therefore need to calculate both Fj(a) and E;(a + 7/2) and compare them. The
argument corresponding to the smaller value of E; is taken for further calculations.
Using this « I can get the next approximation to the vector |u); and the energy E}

explicitely.
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The last step is to normalise |u); manually. Of course, if all the steps described above
were performed with infinite precision, this step would not be necessary. However,
I deal with finite-precision calculations, and the machine error will accumulate with

each iteration. I circumvent this problem by renormalising the vector |u);.

3. I repeat the procedure described in item 2, only treating the vector |u); and eigen-
value E; as known, and using them to calculate the next vector, |u)9, and the next
eigenvalue, Fs. I do so iteratively in a loop, until the relative difference between two
consecutive approximations of the eigenvalue is smaller than the predefined accuracy

factor:
‘ Ei1— E;

%

< EPS. (3.85)

The value FPS is defined by the user, but it should not be smaller than the re-
spective machine accuracy (typically 107!). Note that the user does not have to
preset the number of iterations, which would decrease the generality of the method.

The iterative procedure should be self-terminating - upon fulfilment of the accuracy

condition (3.85).

Let us now move on to the optimised version of the steepest descent approach - the
conjugate gradient method. The goal of the optimisation is to limit the number of
iterations necessary to reach convergence. I shall attempt to accomplish this by influencing
the choice of auxiliary vectors |g); in each iteration. This will be, however, the only
difference distinguishing this algorithm from the steepest descent method.

As described above, the directions generated in the steepest descent method are com-
pletely defined by the matrix H and the current vector |u);, without any correlation with
any previous gradients |g); or vectors |u); with j < 4. In particular, the gradient in step
i, |9)i, does not have to be orthogonal to the gradient in the step j, |g),;, which means
that I will rotate the vector |u) (at least partially) in the same direction in both steps. It

would be best, however, not to repeat the rotation direction that has already been used.
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The idea here is to orthogonalise the gradient vector in step i, |g);, to all the previous
gradients, i.e. to define a direction |d);, which is equal to the gradient |g);, but with all
previous gradients |g); projected out of it. That way each new direction will be orthogonal
to all previous ones, and I will never retrace the steps already taken. It can be proved,
however, that the problem posed in this way is over-constrained [109]: the construction of
a sequence of steps along these lines requires the prior knowledge of the solution, which
I seek.

However, instead of enforcing orthogonality of directions, I can enforce their conjugacy.

Two vectors, |z) and |y) are conjugate if they fulfill the condition
(z|H|y) = 0. (3.86)

(note that the orthogonality condition is (z|y) = 0 and does not involve the Hamiltonian
matrix H). As I shall describe, it is possible to create a set of conjugate vectors recur-
sively, retaining in memory only two immediately preceeding vectors (the generation of
an orthogonal set requires knowledge of all previous vectors).

The procedure starts by simply taking the gradient |d)y = |g)o as the zeroth direction.
I use this gradient to establish the next approximation to the eigenvector and eigenvalue,
precisely as it was done in the steepest descent method.

In the first step of the algorithm I already have two objects: the gradient |g);, and
the direction from the previous step |d)g, and I can use these two. The direction in this
step, |d); is written as

)1 = |g)1 + Buld)o. (3.87)

Note that the two vectors on the right-hand side of this equation are known; I only have
to establish the value of the parameter 8;. I do it by requiring that |d); be conjugate to

the previous direction, |d):

— _ of{d|H|g)1
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Now I look for the next approximation of the eigenvector and the eigenvalue using the
direction |d); rather than the gradient |g); itself.

In each next step of the algorithm I generate the new direction in an analogous way:

d)i = |g)i + Bild)i-1. (3.89)

Note that I only use the current gradient and the previous direction in this process. The

parameter (3; is calculated by requiring that |d); be conjugate to |d);_1, and is

_ _i—1{d[H|g)i
T LD (390

In the case of the general conjugate method, i.e., the one in which I do not require the
normalisation of the guess vector, it can be proved [109] that by this construction each
direction is conjugate not only to the immediately previous one, but to all previous di-
rections. In the current algorithm, in order to maintain the normalisation constraint, I
introduce a new element: at each step the direction |d); is additionally manually orthogo-
nalised to the previous vector |u);, before the new vector |u);y; is obtained. This is aimed
at conserving the normalisation of |u), as was already explained for the steepest descent,
but it upsets the conjugacy. The new direction |d); will be conjugate to the previous
direction, and nearly conjugate to the one before that, but the conjugacy with earlier di-
rections will be preserved to a lesser and lesser degree. This is a drawback, since it leads
only to a local improvement of the rate of convergence. However, the loss of conjugacy
does not cause the algorithm to diverge, nor converge to a wrong value; the algorithm
will simply converge slower, but always to the correct eigenvalue.

Having understood the idea of conjugacy I shall now formulate the minimisation al-

gorithm that employs it.

1. First I generate the guess vector |u)o and normalise it to 1; I also calculate Eq, as

described above.

2. I find the gradient |g)o, normalise it, and using it I find the appropriate parameter
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a as I did in the steepest descent algorithm. This parameter « is then used to

generate the next approximation |u); and Ej.

3. This step is unique to the conjugate gradient algorithm. I generate the next gra-
dient, |g); = H|u); — E1|u);, but I am not using it in the rotation of the vector.
Instead, I use the direction |d); = |g)1 + B1]|d)o, with the parameter 3; = —EJ(%}%%)%.
In general, the vector |d)} generated this way will not be orthogonal to |u);. In or-

der to preserve the norm of my approximate eigenvector |u), I need to perform the

orthogonalisation manually, e.g., by taking a single step of the well-known Gramm-

1(uld)}
1{ulu)

Schmidt orthogonalisation: |d); = |d)] — |u)1. Of course, the above expression
can be written in a simpler form - without the denominator, since the approximate
eigenvector |u); is normalised. If execution time is absolutely crucial, the denomi-

nator can then be simply set to 1, as it should be in theory. However, this may not

be so in practice due to the computer roundoff errors.

4. Now that I have the old approximate vector |u); and the new direction |d);, I can
generate the new approximate vector |u), in precisely the same way as I did for the
steepest descent - writing it as a rotation and calculating the appropriate angle .

Thus I obtain |u), and the corresponding approximate eigenvalue Es.

5. I repeat the step 3 until the convergence is reached.

To compare the performance of the two algorithms, I take the model Hamiltonian
matrix describing a two-dimensional quantum well with rigid walls, discretised on a mesh
of points. The continuous Schrodinger equation in the effective Rydberg units takes here

the form
T a.9 7] ¢(37,y) = E(;S(x,y), (391)

where 0 <z <1 and 0 <y < 1 (the length of the sides of the square well is equal 1 ag,
and the walls are infinite). Elementary analytical calculations show that the ground-state

energy in such a well is Ey = 272 Rydbergs. The discretisation scheme involves replacing
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the continuous function ¢(z,y) by the function ¢(z;,y;) defined on a mesh of discrete
points. For the model calculation, let us assume that I have discretised the system in
such a way that there are M + 2 points along each wall of the well, numbered from 0
(the first point has number 0, the second - number 1, and so on, until the last, M + 2-nd
point which has the number M + 1). Therefore the distance between points along each
coordinate axis is Ax = Ay = ﬁ The first and last of the mesh points coincide with
the wall of the well, and therefore I expect the wave function to be equal to zero on those
points. The function may assume nonzero values only on the mesh inside the well, and

this mesh comprises M? points.

I also need to discretise the second derivatives in the Schrodinger equation:

8a—;¢($, ) o P(xio1,y;) — ZdE(A.T;,)ZQJj) + ¢(wiqa, yj), (3.92)
Ti,Yj

and similarly for the derivative over the coordinate y. Upon this discretisation, the con-

tinuous Schrodinger equation (3.91) can be written as a set of linear equations of the

type
— (i1, ;) — B (@i, yj—1) +46(@i, y;) — d(@is1, y;) — (@i, yj1) = (Az)*Ed(i, y;) (3.93)

for each of the points in the mesh, i.e., for 1 < < M and 1 < 7 < M. Whenever the
above equation requires the value of the function ¢ on any of the walls of the well (i.e., for
i=0ori=M+1orj=0orj=M+1), the value 0 is explicitely introduced instead. I
also order the equations in such a way that in the first one I have ¢ = j = 1, in the second
-1 =2and j =1, etc, until I reach : = M, j = 1. After that I begin again with : = 1
but this time j = 2. I continue this sequence until I reach the equation with : = j = M.

Such a set of equations can be written in a matrix form, with a penta-diagonal matrix
H of order M? x M?. All the diagonal elements of this matrix are equal to 4, and on the
immediate upper and lower diagonal I put —1, except for each M + 1-st element along it,
which is set to zero (this is due to the rigid wall of the well, positioned next to this point

on the mesh). Also, this matrix possesses a remote upper- and lower-diagonal, filled with
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values —1, beginning respectively in the M + 1-st column and the M + 1-st row. Upon
diagonalisation of this matrix I obtain the eigenvalues ¢, which can be converted to the
values of energy by rescaling E = ¢/(Ax)?.

In these model calculations I assume M = 50 so that the simple Hamiltonian is of the

size 2500 x 2500. The target eigenvalue - the ground-state energy that I should obtain

in the diagonalisation - is ¢y = 5?7;;1 = 0.0075890845. Of course, I should not expect to
obtain this value exactly, as the factor 272 in this formula corresponds to the true solution
of the continuous equation (3.91).

The steepest descent method applied to the matrix H converged to the value of
0.007586685051830517 after 3392 iterations. The relative error EPS, as calculated in
the algorithms, was decreasing systematically in the progress of the calculation, attaining
the value of about 7.16 - 109 after first 500 iterations, about 7.82 - 109 after first 1000
iterations, and 1.41-107!! after 2000 iterations. Thus I deal with a long convergence tail.
As for the conjugate gradient applied to the same matrix, it converged to the value of
0.007586685051823797 after only 174 iterations. A comparison of relative errors EPS of
both methods as a function of the number of iterations is shown in Fig. 3.1. Note that
the line corresponding to the steepest descent method exhibits some oscillatory behaviour
just before reaching the convergence. The line corresponding to the conjugate gradient
method does exhibit such behaviour as well, but to a much smaller degree. This perfor-
mance comparison shows clearly the superiority of the conjugate gradient method over
the steepest descent. The latter converged after taking more steps than the order of the
matrix itself, whereas the conjugate gradient method converged after the number of steps
equal to about 7% of the order of the matrix.

Both the steepest descent and conjugate gradient methods are capable of finding the
ground state eigenvector and eigenenergy only. The last issue that I need to address

is the use of the iterative methods in finding not only the ground, but also the excited

states of the system. To this end I employ a technique called the spectrum folding
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(dashed line) methods as a function of the iteration number.
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method, used extensively in large computations, e.g., by the group of Alex Zunger [28].
Preparation and implementation of the spectrum folding algorithm in the form described
below, and coupling it with the conjugate gradient method is an original work of the
author of this Thesis.

The spectrum folding method involves constructing a new Hamiltonian Hs, whose
ground-state eigenvector is identical to the eigenvector corresponding to one of the excited

states of the original Hamiltonian H. The new Hamiltonian is postulated in the form:
H, = (H —€l)’, (3.94)

where ¢ is a user-supplied number with dimension of energy, and I is the unit matrix. Let
us explain the meaning of the number ¢ later. First I shall look at the eigenvectors of Ho.
Let us assume that the vector |v) is one of the eigenvectors of the original Hamiltonian
H with the eigenvalue E, i.e.,

H|v) = E|v). (3.95)

I have

Hylv) = (H —el)(H —el)|v) = (E —¢)*v),

which means that the vector |v) is also an eigenvector of Hy, but with eigenvalue (E —¢)?.
Thus, in transition from the Hamiltonian H to H, the eigenvectors are unchanged, and
the energies are transformed quadratically: E; — (E; —¢)2. To see what this gives me, let
us assume for a moment that the original Hamiltonian H has both positive and negative
eigenvalues, and let us take ¢ = 0. Clearly, upon transformation to the Hamiltonian H,
all the eigenvalues will be squared, so that all the negative eigenvalues will acquire the
positive sign. Thus, by transforming H to H,, I have parabolically “folded” the spectrum
of the original Hamiltonian H. Note that the ground state of the Hamiltonian H, will be
different than the ground state of H - in fact, the ground state of H, will be one of the
excited states of H, the one, whose absolute value of eigenenergy was originally closest to

zero. Now, if I tune the parameter ¢, I can additionally shift the energy spectrum of H,
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which gives an ability to bring the eigenenergy of the chosen excited state of H to zero.
This guarantees that the chosen excited state will become the ground state of H,, and I
can find it using the conjugate gradient algorithm. By appropriate tuning of € I can thus
find all the eigenstates of H, and the eigenenergies that correspond to them.

The last issue I shall address here is the choice of the most efficient way of tuning the
shift €. In principle, one could simply change it in some small steps over a chosen region
of values. That would, however, require a long time, necessary to perform such a large
number of iterative diagonalisations. There is also a danger that the eigenvalues of H can
be clustered in such a way that the gaps between them are smaller than the step taken in
tuning the shift ¢; such eigenvalues would be impossible to resolve with this procedure.
To circumvent, these obstacles, I propose a more efficient tuning scheme, involving partial

reorthogonalisation of the guess vector. I proceed in the following way:

1. Find the ground-state eigenvector and eigenvalue of the original Hamiltonian H. To
this end, I do not have to fold the spectrum, since the conjugate gradient method is
constructed to find the lowest eigenvalues of matrices. The ground-state eigenvector

found in this step is stored for further processing.

2. Find the approzimate first-excited-state eigenvector and eigenvalue by performing
the conjugate gradient minimisation with the original Hamiltonian H, but imposing
an additional constraint on the guess vector |u) in each iteration: not only does it
have to be normalised, but also orthogonal to the ground-state eigenvector found
and stored in the previous step. The orthogonalisation is accomplished by means of

the Gramm-Schmidt procedure.

3. Use the approximate eigenvalue of the first excited state - found in the previous
step - as the shift . Use this shift to construct the Hamiltonian Hs, and perform
the conjugate gradient procedure with it. The shift causes the first excited state of

H to be the ground state of H, with corresponding eigenvalue equal to zero. The



CHAPTER 3. METHODS OF ANALYSIS... 118

eigenvector found this way is stored for further processing.

4. Repeat steps 2 and 3 for higher and higher states of H, “guessing” the approximate
eigenvalue corresponding to each of them by performing the conjugate-gradient min-
imisation with reorthogonalisation to all eigenstates previously found, and use this
approximate eigenvalue as the shift in Hy. The reorthogonalisation procedure is not

used in this step.

Note that this shifting-and-reorthogonalisation procedure allows to resolve even those
eigenstates of H, whose eigenvalues are degenerate. Unfortunately, I pay for this func-
tionality by extended storage requirements - I need to store all the eigenvectors found in
subsequent steps. This may make it impossible to find all the eigenvalues and eigenvectors
of H, but in my calculations I will be interested in resolving only the ground and several
excited states of the system anyway. The most important feature of the proposed method
is the fact that the numerical error, accumulating in the reorthogonalisation, does not
affect the eigenvalues, since the reorthogonalisation steps are taken only in evaluating the

optimal shift, and not the final result.

3.4 Other methods accounting for electronic correla-

tions

In this Chapter I have built the optimised exact diagonalisation technique for many-body
systems confined in QD potentials, and I have demonstrated its operation on a system
of several interacting electrons confined in a two-dimensional parabolic potential. As I
have shown, this method involves building a basis set out of electronic configurations,
constructing the Hamiltonian matrix in this basis and diagonalising it numerically. This
approach treats all aspects of the Coulomb interaction on equal footing (without any

approximations), and therefore the results it gives are, in principle, ezact. However, as [
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have shown, the basis of many-particle configurations in a parabolic confinement is infinite,
and, to be able to perform computations, I need to restrict it by considering only a finite
number M of single-particle states, on which I distribute my electrons. This is, in fact,
the only approximation of this method, and I can control it by performing convergence
studies, in which I examine the ground-state energies of the system as a function of the
parameter M. In Section 3.3 I have shown that even with the cutoff the number of
electronic configurations necessary to obtain a well-converged result increases factorially
both with the number of electrons N and the number of single-particle states M. This
makes the method extremely unwieldy for larger electron numbers; using present-day
computers I was only able to treat at most nine interacting particles.

But often of interest are properties of larger systems, and in these cases the configura-
tion-interaction method can only be used to form general intuitions about their properties,
as the limitation of the basis to manageable sizes prevents me from reaching convergence.
In these cases other - approximate - methods must be used. Here I shall briefly describe
two of such methods - the spin density functional theory (SDFT) and the quantum dif-
fusion Monte Carlo method (QDMC) - which are also capable of resolving correlation
effects, albeit in an approximate manner. The main point of this presentation is the fact
that the results obtained with these methods can be compared to those of the exact di-
agonalisation for systems in which the performance of the latter technique is adequate.
This allows to control the approximations made in SDFT and QDMC, so that, when these
methods are applied to larger systems, their results are more reliable.

My description of SDFT and QMC methods will be limited to fundamentals only, as
I shall not use them in the rest of this work. My goal here is to inform the reader of their

existence and provide the appropriate literature context.
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3.4.1 Spin density functional theory

In this Section I shall describe the fundamentals of the spin density functional theory. This
description will be based on original papers of the contributors to this theory, but the
reader can find excellent reviews of the subject in Refs. [116, 127]. To ensure consistency
I shall use the notation proposed in these publications.

The development of the density functional theory (DFT) was started by P. Hohenberg
and W. Kohn in 1964, who proved [60] that the energy of a system of interacting particles
in an external potential is a unique functional of electronic density. In their work they

introduced the following notation:

7To= —Qh—n; / dr¥* (r) AU (r); (3.96)
Vo= / drV (r) U (r) ¥ (r); (3.97)
W= %%2 [ | dr'|r_17r,|\11+(r)\lf+(r')\Il(r')\If(r). (3.98)

Here, T is the kinetic energy operator, V is the operator introducing the external potential
V(r), W is the operator introducing the Coulomb interactions. The Hamiltonian of the

system can be written as a sum of all these operators:

~ ~

H=T+V+W. (3.99)

Moreover, ¥(r) are the field operators; with their use the electronic density operator can

be written as

i(r) = U (r)¥(r). (3.100)

The Hohenberg-Kohn formalism treats the electronic density n(r) as the central quan-
tity, by means of which all properties of the system can be described completely. In fact,
even the electronic wave functions |¥[n]) are functionals of the density. Now, the expecta-
tion value of any observable O can be expressed as O = (¥[n]|O|¥[n]), and, in particular,
the energy

E[n] = (¥[n]|H|¥[n]) (3.101)
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is a unique functional of density. This ezact result is the Hohenberg-Kohn theorem.

The formula for energy as a functional of the electronic density can be used to find the
ground-state energy Egg of the system. Hohenberg and Kohn prove that Egs = E[ng(r)]
if the density ng(r) fulfils two conditions: first, it minimises the functional E[n|, and

second, it is normalised to give
N[n] = / drn(r) = N, (3.102)

where N is the number of electrons in the system. The greatest strength of the Hohenberg-
Kohn theorem is the fact that it allows to work with a three-dimensional electronic density
instead of the 3/N-dimensional electronic wave function. As I shall show, this allows
to treat electronic systems far larger than those treatable by the exact diagonalisation
method provided that one is able to correctly minimise the energy functional for these
systems.

In treating the electronic density up to now I have neglected the spin degree of freedom.
This quantum number is, however, essential for systems of interest, as I have already
demonstrated in Section 3.3.2. The inclusion of electronic spin into the DFT formalism
in early 1970s led to the development of the spin density functional theory (SDFT) [13,
100]. In SDFT, the electronic density n(r) is replaced by a pair of densities, n4(r) and
ny(r), corresponding to electrons spin up and spin down, respectively. Therefore the
field operators ¥ acquire an additional index, and are denoted as ¥,(r), and in the
definitions (3.96), (3.97), (3.98) of energy operators the integration over coordinates must
be supplemented by the summation over spins. Now the total energy of the system is a

functional of the two densities,
Elny, ny] = (¥ng, ny][H|¥[ng, ny]), (3.103)

and the ground state energy Fgg[ns,n)| can be obtained by minimising the above func-

tional with respect to both densities under constraints

/ drna(r) = Ny, (3.104)
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/drm(r) = N, (3.105)

N;+ N, = N, (3.106)

where N; (N;) is the number of electrons spin up (down).

The latest density-functional theories include an additional term in the Hamiltonian,
accounting for the interaction of currents, created by orbiting electrons, with the magnetic
field. This is the so-called current-spin density functional theory, developed by Vignale
and Rasolt [125]. However, the current corrections - at least in the quantum-dot systems
- have been shown to be very small [116, 127], and I shall not describe them further.

I have defined the object on which I need to work: the total energy as a functional
of the electronic densities. Let us now briefly describe the minimisation procedure of
this functional, used to obtain the ground state energy and density of the system. This
procedure was developed by W. Kohn and L. Sham in 1965 [67]. To simplify the descrip-
tion, let us follow their notation and drop the spin index in densities and functionals; all
the derivations presented below can be naturally extended to resolve the spin degree of
freedom. To arrive at the famous Kohn-Sham equations, let us introduce an additional
density functional

Fn] = (¥[n]|T + W |¥[n]), (3.107)
being the expectation value of the Hamiltonian without the external potential V. It is

further convenient to isolate the so-called exchange-correlation energy:

Excln] = Fln] — n]———/d /d’ r_r,| (3.108)

Thus, Ex¢ is obtained by subtracting from the functional F' the kinetic energy func-
tional 7" and the direct Coulomb energy functional (the last term in the above equation).
Ex¢ carries only the effects of exchange and electronic correlations. Hohenberg and
Kohn proved [60] that if the densities n,(r) are slowly varying functions, the exchange-

correlation energy can be written as

Exoln] = / drn(t)excn(r)], (3.109)
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where exc in a uniform electron gas is the exchange-correlation energy per electron.
Now the total energy functional can be minimised with respect to the density. To
this end, the energy functional (3.103) is functionally differentiated with respect to the

density and this derivative is equated to zero. One obtains [67]

/d b {5T[n /d i +ch[n( )]} 0, (3.110)

with the constraint

/drén(r) = 0. (3.111)

In the above equations, pxc[n(r)] = d(nexc[n(r)])/dn(r) is the exchange-correlation
contribution to the chemical potential for the electron gas.
Solving the above equation for the density n(r) is equivalent to solving the single-

particle Schrédinger equation

h2
{_2m*A+V /dr

for each electron. Thus, each electron moves in the mean field created by the external

el 60 = B G2)

potential V(r), the direct Coulomb repulsion with all other electrons, and the potential
ixc taking into account the exchange and correlation effects of the electronic system.
The wave function ¢;(r) is the ground state of the electron in this effective potential (the
Kohn-Sham orbital).

Since the effective potential experienced by each electron depends on the behaviour
of all other electrons, the equation (3.112) must be solved self-consistently. The process
starts by assuming some initial density n(r) (e.g., constant), and calculating the wave

functions ¢;(r) for each electron. Next, the electronic density is recalculated as follows:

= ; A (3.113)

and the new density is used to solve for the ground state wave functions of each electron.

The procedure is repeated until the density profile n(r) converges, i.e., subsequent steps
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do not change the density any more. The final density can be further used to calculate
the total energy of the system via the energy functional E[n].

As I mentioned before, extension of the Kohn-Sham equations to include spin is
straightforward. The only modification is due to the fact that now the exchange-cor-
relation potential yxc depends on the spin o, and one formulates separate set of Kohn-
Sham equations for electrons spin up and for electrons spin down. As a result, one obtains
Kohn-Sham orbitals with additional spin quantum number, and by summing their squared
moduli as presented above one arrives at the densities of electrons spin up and spin down.

The Kohn-Sham equations (3.112) have been derived without any approximations,
and so they describe the electronic properties of the system in the eract manner. How-
ever, I cannot solve them yet, since the exact form of the exchange-correlation functional
pxcln(r)] is not known. Unfortunately, this functional cannot be obtained from first
principles. The forms most commonly used in this context are postulated on the ba-
sis of extrapolations from the few exact results available. Frequently one assumes that
the exchange-correlation potential pxc can be locally approximated by the potential for
an infinite system at constant density [104]. This is the “local spin density approx-
imation”. The parametrisation of choice, commonly used in the context of parabolic
two-dimensional quantum dots, is that of Tanatar and Ceperley [120]. These authors
obtained the exchange-correlation functional of the two-dimensional gas as a Padé ap-
proximant. This approximant is constructed by fitting to the available quantum Monte
Carlo results obtained for selected values of electronic density.

This necessity of postulating the exchange-correlation functional unfortunately makes
the SDFT only an approximate theory. Nevertheless, it is widely used to examine the
properties of many-electron quantum dots with electron numbers far exceeding the capa-
bilities of the exact diagonalisation method. In Section 1.5 I have discussed some of the
applications of the SDFT method to electronic QDs. For references and reviews of this

field, I refer the reader to Refs. [11, 59, 75, 102, 104, 111, 128]. The density-functional
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approach with the Thomas-Fermi-Dirac-von Weizsicker energy functional can also be ap-
plied to arrays of quantum dots; for instance, the magnetoplasmon excitations in such
arrays were analysed in Ref. [132]. In the context of comparing the SDFT method with
the exact diagonalisation approach the work by Wensauer [127] is particularly interesting:
the author attempts to extract the exact form of the exchange-correlation potential from
the results of the exact diagonalisation for systems with few electrons, in which both

methods can be applied with the same accuracy.

3.4.2 Monte Carlo methods

Let us now describe a different approach to the many-body problem, involving random
sampling of the parameter space of the system and analysing the results obtained this
way by statistical methods. Due to this random sampling process, this approach is widely
known as the quantum Monte Carlo method (QMC). In reality one can name several
quantum Monte Carlo methods, differing in the definition of the parameter space being
sampled. A review of these methods can be found in several papers by D. Ceperley [29],
in which the author presents the main principles of the variational QMC, path integral
QMC, Green’s function QMC and the diffusion QMC. Each of these techniques is usually
used in a slightly different context. For instance, in the variational QMC one defines a
trial variational wave function of the system, and, using the variational principle, one tries
to find the minimum of the expectation value of the Hamiltonian in this state. The wave
function usually depends on several parameters, whose optimal values must be found,
and the calculation of the expectation value of the energy usually involves calculating a
multi-dimensional integral. Both tasks can be accomplished using Monte Carlo sampling.
In path-integral QMC all the possible paths the system can take in its evolution are
explored, usually using the rejection algorithm of Metropolis et al. [84]. Here, however, I
shall focus only on the quantum diffusion Monte Carlo technique (QDMC), because it is

frequently used to study the properties of systems of many interacting electrons confined
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in quantum dots.

Perhaps the best introduction to the subject can be found in Ref. [3], where Anderson
describes the application of QDMC to study the properties of the H; molecule, composed
of three protons localised in the corners of an equilateral triangle, and two interacting
electrons with antiparallel spins moving in their potential. The description starts with
the simple one-dimensional time-dependent Schrédinger equation, written for a single
particle moving in a potential V' (z):

L oY(z,t R 0%(x,t
ik ((3": ):2m* aif;" ) (3.114)

The key point of the method consists in introducing the imaginary time 7, defined as

t
=1—. 3.115
T=ly ( )
The Schrodinger equation written in terms of this parameter takes the form
2 52
Ovle,T) _ W OWET) (e, m). (3.116)

or 2m*  0z2

Clearly, the above differential equation can be easily integrated over the imaginary time,

and its solution will have the form

b(w,7) = P(x)e™ "7, (3.117)

where the orbital part 1(z) of the wave function and the energy E must be obtained by
solving the stationary Schréodinger equation, defined by the right-hand side of Eq. (3.116).
Note that the form of Equation (3.116) is similar to that of the diffusion equation in
real time:
oC 0°C

where D is the diffusion constant, C' is the distribution of diffusing particles, and & is a
rate term, describing the decay of the population of diffusing particles. The idea of the
QDMC technique is to use this analogy, and model the imaginary-time evolution of the

system as the game of chance, using “ particles” as random walkers.
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By mapping the equation (3.116) onto the equation (3.118) one sees immediately that

h2

for each random walker ¢ situated at the position z the “diffusion constant” D = 5 —,

and the “rate term” k = V/(z), i.e., it is equal to the value of the potential V at the point
where the random walker is. The simulation is organised in such a way that the imaginary
time 7 is advanced in steps A7, and during this time interval the random walker changes
its position by Ax. These quantities are, of course, not independent; according to the

Einstein relation [94]
1 (Az)?
2 Ar

In the absence of the rate term £ the diffusion equation can be solved analytically,

=D. (3.119)

and the probability that the random walker takes the step of length Az in time interval

AT exhibits a Gaussian distribution:

W(Az) = \/21?0 exp (— (352) ,) (3.120)

where the parameter 0 = vV2DA7. This is why in this game of chance after each time

step A7 one moves the random walkers by distances Az selected at random according
to the Gaussian distribution, and accounts for the rate term (i.e., the existence of the
external potential) by conditional deaths or births of random walkers.

I can now formulate the general QDMC algorithm for my problem, posed by defining

the Schrodinger equation for a M-particle system

oy [ n? B
3= ; 2miAi — (V= Vieg) | ¥ = —(E — Viep)tb. (3.121)

1. In the first, preparatory step, one creates N random walkers distributed randomly
in real space. If the problem has a single-particle nature in three dimensions, each
random walker will be remembered as a triplet of numbers, defining its coordinates.
If the problem involves more particles, say M, each random walker will have 3M

coordinates, defining the position of each particle in space.

2. Now the simulation time is advanced by A7 (this time interval is chosen by the

user). All coordinates of each random walker are changed by the step Ax selected
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at random with the Gaussian distribution as described above. Of course, steps for
each coordinate of each random walker are chosen independently, so that in each

case we deal with the real random walk in 3M-dimensional space.

3. Next one accounts for the rate term k. In this simulation, as already mentioned,
the value of this rate term equals to the value of the potential at coordinates of each
random walker, and is clearly different for each walker. In general, it is not just the
confinement potential, but it also contains all relevant particle-particle interactions.
For instance, for my interacting electrons the rate term will comprise both the value
of the parabolic potential corresponding to a given distribution of electrons in space,

but also all Coulomb interactions between each pair of electrons.

The probability of birth or death is calculated by comparing the full potential V' of
a given walker to a certain reference potential V¢, used to control the population of
walkers; I shall define this potential later. Here let us only state that the probability

of birth for each walker is

Pg=—(V - V;ef)AT it V<V,
Ps=0 it V> Ve,

and the probability of death is

Pp = (V= Viep)Ar if V>V,

P, =0 if V< V.
For each walker one select at random a number from the region (0, 1) (with uniform
distribution) and compares it to the above probabilities. If this number is smaller
than Ppg, another, new walker is introduced at the position of the current one (birth),
and if it is smaller than Pp, the current walker is removed from the population. Note

that by doing so I, in general, change the number N of random walkers.

4. The procedure outlined in points 2 and 3 is repeated until the population of random

walkers reaches the steady state distribution.
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I must now develop tools allowing me to derive meaningful physical information from
the random walk procedure. First of all, let us define the reference potential V,.; as

N — Np

‘/ref = ‘/avg - m

(3.122)

The number Np is the target number of random walkers. If the current population N
is smaller than Np, the reference potential will favour births of walkers; if N > Np, the
reference potential will favour their deaths. In the above formula, V,,, is the average po-
tential of random walkers, calculated by adding the potential of each walker and dividing
by the current number of walkers N. Second, it can be proved [3] that upon reaching the
steady-state distribution, the total energy of the system is simply F = V,,,.

The procedure I have just described contains no approximations, and therefore should
give exact results within the numerical accuracy of the algorithm. In practice, in order
to be able to perform a meaningful statistical study, it is advisable to take large popula-
tion of walkers and small time steps A7. Another improvement in the efficiency of this
algorithm can be introduced by the so-called importance sampling [3]. In real systems the
random walkers are usually distributed nonuniformly, reflecting the fact that usually the
probability of finding the particles is larger in some areas, and smaller in others. There-
fore, it is not efficient to sample all these regions in the same way: regions, where the
wave function is expected to assume the largest values, should be sampled preferentially.
To introduce this importance sampling, one usually prepares a trial function, reflecting
the expected steady-state distribution of walkers, and one modifies the QDMC algorithm
so that only the difference between the actual and the trial distributions is calculated.

The quantum diffusion Monte Carlo algorithm can be applied directly to single par-
ticle problems, and problems of many interacting bosons. However, in the case of many
interacting fermions it is necessary to modify the approach in order to account for the
antisymmetry of the wave function of the system. From the above description it is clear
that the distribution of the random walkers is a measure of the wave function distribution

in the system, but the method cannot yield negative distributions. But for many-fermion
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systems there must be regions, where the total wave function of the system assumes pos-
itive values, and other regions, where it is negative. The QDMC algorithm in such cases
is constructed in such a way that the motion of random walkers is constrained to areas,
where the function is positive, and, at the same time, only those areas that are not con-
nected via the permutation operator. This is an important difficulty, since in order to be
able to execute the algorithm, one must know in advance where the nodes of the total
wave function are so that the motion of walkers can be restricted only to the appropriate
regions between nodal surfaces. To achieve this goal, several techniques were developed,
usually involving some kind of trial wave function 7 as an input [3, 23]. The trial
function can be prepared, e.g., by performing the SDFT calculation first, arranging the
Kohn-Sham orbitals in a single Slater determinant, and determining the nodal surfaces
of such many-particle function [22, 49].

Another difficulty appears in treatments of interacting fermions in the presence of
an external magnetic field. Since in such cases the real-space Hamiltonian exhibits a
broken time-reversal symmetry, the wave functions are usually complex, and the magnetic
field usually couples to their phase [93]. In this case it is possible to write the complex
Schrodinger equation as a set of two coupled real equations: one for the modulus, and
one for the phase of the wave function, and the equation for the modulus is already of
the bosonic nature, i.e., does not suffer from the sign problem. The procedure here is to
make a choice for the phase, and solve for the modulus exactly (that is, exactly within
this particular choice of the phase) using the diffusion algorithm.

The QDMC and other Monte Carlo techniques are extensively used in the context of
many-electron quantum-dot systems [22, 40]. In the paper discussing the exact diagonal-
isation method optimised for the harmonic-oscillator basis set (Section 3.3.2), we have
briefly presented a comparison of energies obtained with this method and with QDMC,
and shown an excellent agreement of the results of these two techniques. However, it

is clear that the QDMC method is capable of handling much larger systems than the
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exact diagonalisation. The only real difficulty arises in constructing the fixed-node or

fixed-phase schemes, whose level of complexity increases with the increase of the number

of electrons.



Chapter 4

Electronic correlations as a function

of the confinement energy

In Chapter 2 I have found the single-particle spectra of the most important classes of
QD potentials, and in Chapter 3 I have formulated the problem of many interacting
particles confined in QDs. In order to solve this problem, I have introduced the exact
diagonalisation method with optimised many-particle basis set. 1 have demonstrated
that this method treats all aspect of particle-particle interactions on equal footing, and,
within the assumed cutoff of the single-particle basis, delivers the exact eigenenergies of
the system. In the following chapters I shall use the theoretical tools thus constructed to
analyse the properties of systems of many interacting particles confined by nanostructures
with various geometry, with special attention devoted to the manifestations of particle-
particle correlation effects.

My presentation starts with the description of properties of N electrons confined in
a parabolic quantum dot at zero magnetic field. This description is given in the paper
“Designing quantum systems in self-assembled quantum dots”, by M. Korkusinski, W.

Sheng, and P. Hawrylak, published in Physica Status Solidi (b), vol. 238, page 246

132



CHAPTER 4. CORRELATIONS AS A FUNCTION OF CONFINEMENT 133

(2003). This publication is an integral part of this thesis and is appended to the presented
material. Below I shall highlight the most important points of this work.

Let us start by comparing the energy scale of the single-particle energy quantisation
with that of Coulomb interactions. For a parabolic dot the fundamental scale of the
single-particle energy quantisation is introduced by the characteristic oscillator energy
Qo = hwy/R (see Section 2.1; R is the effective Rydberg). As for the interactions, their
strength can be measured, e.g., by the magnitude of the fundamental Coulomb matrix

element described in Section 3.1.2:

(00, 00|v]00, 00) = Ey = (4.1)

~[%

where the oscillator length ¢ at zero magnetic field, when expressed in the effective Bohr
radii, is simply £ = 1//Qy. Therefore, the characteristic energy Ey = /7).

Let us now compare these two energy scales. The single-particle energy quantisation
scales linearly with the oscillator energy, while the interactions scale as square root of 2.
Then, as I tune €y - by changing the dot size in the case of SADs, or by tuning the gate
voltage in the case of gated devices - I can change the ratio of these two energies. The
characteristic single-particle energy becomes equal to that of interactions when €y = 7.
If the confinement is stronger (€y larger), then the single-particle energy quantisation
is larger than interactions, and if the confinement is softer (o < 7), the situation is
reversed.

Thus, when considering the system of many interacting particles one expects to find
two regimes. In QDs with strong confinement the single-particle energy quantisation
dominates, and one can construct the ground state of the system just by distributing the
particles on the single-particle levels with the lowest energies, seeing only that the Pauli
exclusion principle is satisfied. The total energy of the system can be then calculated
perturbatively. On the other hand, for QDs with sufficiently soft confinement the interac-
tions will dominate the energy landscape of the system. One expects strong configuration

mixing, and so one can no longer anticipate the ground-state configuration reliably: it
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has to be calculated. It is possible that the ground states of the systems in each of the
regimes will be different.

To demonstrate this, I shall now consider a system of three electrons in a parabolic
quantum dot with two single-particle shells. As I demonstrated in Section 2.1, the lowest,
s shell in the parabolic potential consists of one doubly-spin-degenerate state with single-
particle angular momentum [ = 0. The second, p shell, on the other hand, consists of
two doubly-spin-degenerate states, one with angular momentum /[ = —1, and one with
angular momentum [ = +1. This simple structure of the single-particle energy levels is
presented in Figure 4.1 (a) and (b).

Let us now distribute my three electrons on the three orbitals. If I were to assume
that the particles do not interact, the natural choice of the candidate for the ground
state of the system would be that shown in Fig. 4.1 (a), since it has the lowest total
energy. This configuration is built out of two electrons with opposite spins distributed
on the s shell, and the third electron on the p shell. The total angular momentum of
this state is 0 + 0 + (—1) = —1, the total spin S = 1/2, and the projection of the total
spin S, = —1/2. One can construct another state with the same energy by putting the
third electron on the other orbital of the p shell. This configuration would have the
same total spin and projection as the previous one, but the total angular momentum of
+1. Since the angular momenta of the two configurations are different, the Hamiltonian
does not couple them, and they can be considered independently. Moreover, due to the
symmetry of the system at zero magnetic field, the energy levels corresponding to these
two configurations are degenerate, so it is sufficient to consider just one of them. The
configuration |L,S,) = | — 1,—1/2) shown in Fig. 4.1 (a) is not the only configuration
that can be generated with this particular suite of quantum numbers. Another one would
involve leaving the s shell completely empty, and putting one electron on the orbital
with [ = 1, and two electrons - with opposite spins - on the orbital [ = —1. Therefore,

the configuration I have chosen is not the exact many-body state of the system since
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Figure 4.1: The configuration of the three-electron system with quantum numbers
|L,S,) =|—1,-1/2) (a) and |0, —3/2) (b). The graph (c) shows the expectation values of
the total energy of the system as a function of the confinement energy €2y for the low-spin

state (green line) and the high-spin state (red line)
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it is mixed with the other one by Coulomb interactions. I shall include the effects of
configuration mixing later on.

Let us now consider a different configuration, presented in Fig. 4.1 (b). This is the
only way of distributing the three electrons on single-particle states if I require that all of
them have the same spin. The total angular momentum of this configuration is zero, the
total spin S = 3/2, and the projection of the total spin S, = —3/2. This configuration,
further referred to as |L, S,) = |0, —3/2), is the only configuration in its suite of quantum
numbers, and is thus an ezxact many-body state in the two-shell approximation.

Let us now compare the energies of these two states as a function of €)y. The cor-
responding total energy in each case is calculated as the expectation value of the full
many-body Hamiltonian

H= Z E(i,0)ctcig + % Z (io, jo'|V|ka', lo)ch ¢l Cror i (4.2)

io ijkloo’
Using the energies of single-particle states E(nmo) = Qy(n+m+1) obtained in Section 2.1
and the Coulomb matrix elements calculated in Section 3.1.2, I can express these energies

in the following form:

E_l’_l/g = 490+225 ﬂ'QO; (43)

E()’_g/g = 5Qo+15 7TQO. (44)

The low-spin state has lower orbital energy, but higher interaction energy as compared
to the high-spin state. Therefore, for strong confinements (large {29) one may expect
the low-spin state to be lower in energy than the high-spin state, and for small €}y the
situation may be reversed. This is indeed the case, as can be seen in Fig. 4.1 (c). In
this graph I present the above energies as a function of the confinement energy €2y. For
strong confinement the low-spin configuration is the ground state of the system. But as
)y is decreased, the two energies cross, and a transition to the high-spin state occurs.
This transition takes place at a critical value of confinement energy, further referred to as

QF. Note that this transition is due entirely to the interplay between the single-particle
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(orbital) energy quantisation and direct and exchange Coulomb terms. In this simple
model correlations play no role, since I have not considered the interaction mixing effects
in the low-spin subspace.

To include the correlation effects in a controllable fashion, let us perform the exact
diagonalisation study as a function of the confinement energy {2y and the number of
confined shells Ng. This time I fully account for all configurations possible within each
subspace. Thus, the basis sets of the low-spin and the high-spin subspace no longer
contain just one configuration, but the sizes of these sets grow factorially with Ng. This
is shown in Fig. 4.2 (a), where I give the number of configurations in the low-spin (green
bars) and high-spin subspace (red bars) as a function of Ng; inset to this figure shows
the ratio of these numbers. Note that for all values of Ng except for Ng = 3 this ratio is
approximately 2 : 1, while for Ng = 3 it is almost 3 : 1.

With these basis sets I have performed the exact diagonalisation studies as a function
of the number of shells, and in most cases have observed the low-spin-high-spin transition.
The characteristic value of confinement energy Q7 as a function of Ny is shown in Fig. 4.2
(b). I see, in general, that as I increase the number of shells, the transition occurs for
lower and lower confinements, with the exception of Ng = 3, where the transition does not
occur at all (the ground state is the low-spin state for all values of €y). This behaviour can
be understood in the context of the number of available configurations in each subspace.
As can be seen in Fig. 4.2 (a), for all Ng there are more low-spin configurations than
the high-spin configurations. This is due to the fact that in the case of low spin one can
distribute two electrons on the same orbital, while for spin-polarised configurations this is
forbidden by the Pauli principle. The low-spin states, although not favoured by the direct
and exchange Coulomb terms, have a correlation advantage over the high-spin states due
to larger correlation mixing effects. It is particularly visible in the case of Ng = 3, where
the low-spin basis set is particularly large as compared to the high-spin set, and the

correlation advantage thus gained causes the low-spin state to be the ground state of the
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system for all confinement energies. The progressive increase in basis sizes also causes
the critical value QI to decrease with the increase of Ng, and saturate around Ng = 5,
where the convergence of the low-energy configurations is already achieved (at this stage
further increase of Ng supplements the basis sets only with high-energy configurations,
having a negligible effect on the lowest-energy states). As can be seen, by changing the
number of available single-particle shells one can tune the electronic correlations. This
tuning can be realized in the case of self-assembled quantum dots by engineering these
nanostructures to contain only a desired number of single-particle orbitals.

The paper invoked in the beginning of this Chapter describes similar evolution of
the system with the number of shells and confinement energy for up to eight confined
electrons. The most important aspect of this work is the fact that one can create magnetic
moments in quantum dots by appropriately engineering its single-particle and many-
particle properties: the shell spacing, the number of confined shells, and the number of
electrons distributed on them. For instance, in the case of Ng = 4 shells the electrons
tend to align their spins as the confinement energy €2 is lowered, which means that the
Hund’s rules and the magnetic moments associated with half-filled shells are not valid in

the regime of strong interactions.



Chapter 5

Electronic correlations as a function

of the magnetic field

In Chapter 4 I have described the effects of electron-electron correlations in the system
of N interacting electrons confined in a parabolic potential with no external fields. Let
us now move on to discussing the properties of the system in the presence of a magnetic
field.

Let us compare the orbital energy quantisation and characteristic interaction energies
as a function of the magnetic field. As I have shown in Section 2.1, the single-particle

energy spectrum in the presence of the field is characterised by two frequencies,

1 1
w = \/w§ + ng + gWes (5.1)

where the cyclotron frequency w. increases linearly with the magnetic field. Thus, in
large fields the frequency w, approaches the cyclotron frequency, while the frequency w_

approaches zero. Interactions, on the other hand, scale as

1 1/4

i.e., they increase with the magnetic field. Thus, for sufficiently large wy, in low magnetic

140
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field the single-particle orbital energy quantisation will dominate, while the regime of

large magnetic fields is the regime of strong interactions.

5.1 Collapse of the v = 2 phase of the quantum Hall

droplet

[ start my presentation by summarising the most important points of the paper “Theory of
spin-singlet filling factor » = 2 quantum Hall droplet”, published by Andreas Wensauer,
Marek Korkusinski, and Pawel Hawrylak in Physical Review B, vol. 67, page 035325
(2003). This publication is an integral part of this thesis and is appended to the presented
material.

In this paper we discuss the stability of the v = 2 phase of the quantum Hall droplet
composed of an even number of 2N electrons in a parabolic confinement and in the mag-
netic field. First let us explain what the v = 2 phase is by distributing the 2N electrons
on the levels of the single-particle parabolic energy spectrum, presented in Figure 5.1 (a).
In this Figure I show several single-particle orbitals (0, m, o) forming the lowest Landau
level, and two orbitals (1,0,0) belonging to the second Landau level (for discussion of
Landau levels in parabolic confinement, see Section 2.1). The confinement energy of the
quantum dot Awy = 6 meV, and the Zeeman energy is artificially enhanced for better vis-
ibility. In finite magnetic fields there exists a ladder of low-energy states (0, m, o) whose
energy is lower than that of the lowest-energy orbital (1,0, o) of the second Landau level.
Such a ladder is denoted in the Figure 5.1 (a) by the black bars. If one distributes the 2NV
electrons on these states, they will form spin-singlet pairs and occupy the single-particle
orbitals with increasing quantum number m, as shown in Figure 5.1 (b) for eight elec-
trons. This spin-singlet state of the electronic droplet is called the v = 2 phase in the

terminology of the integer quantum Hall effect.
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Figure 5.1: (a) Magnetic field evolution of the single-particle spectrum of the parabolic
quantum dot (Zeeman energy artifically enhanced). Circles denote the edge spin flip of a
droplet with even (empty) and odd (full) number of electrons; squares denote the centre

spin flip. (b) Configuration of noninteracting electrons corresponding to the » = 2 phase
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Let us now analyse the behaviour of this configuration as a function of the magnetic
field. If the field is low enough, the states from the second Landau level may become
lower in energy than the last occupied orbital on the lowest Landau level. These states
are presented in Figure 5.1 (b) as empty levels with m = 0 and m = 1 above the Fermi
energy, denoted by the black line. Due to the presence of the Zeeman energy, the electron
on the last occupied orbital on the lowest Landau level (0, 3) has spin up, while the lowest-
energy state belonging to the second Landau level can contain the electron spin-down.
Therefore, if the magnetic field is lowered sufficiently, a spin-flip transition will take place:
the electron spin-up at the edge of the droplet will flip its spin and occupy the orbital
(1,0,]) in the centre of the dot. These spin flips for different numbers of electrons are
denoted in Figure 5.1 (a) with black squares.

If the magnetic field is increased, the separation between the consecutive orbitals of the
lowest Landau level with the same spin (equal to fiw ) decreases, and the Zeeman splitting
increases linearly. For sufficiently high magnetic fields these two energies become equal:
in Figure 5.1 (b) the lowest, empty, spin-down orbital with m = 4 becomes degenerate
with the orbital with m = 3 occupied by the spin-up electron. This degeneracy will occur
for the same magnetic field for all orbitals on the lowest Landau level; it is denoted with
empty circles in Figure 5.1 (a). If the magnetic field is further increased, it becomes
energetically favourable for the spin-up electron at the edge to flip its spin and move to
the next orbital. Thus, the v = 2 phase is unstable against the centre spin-flip transition
in low magnetic fields, and the edge spin-flip transition in high magnetic fields. Note
that as more and more single-particle orbitals are populated with electrons, the range
of magnetic fields in which the v = 2 phase is stable becomes narrower and narrower.
It disappears completely for a critical number of electrons, for which the two spin-flip
transitions occur at the same magnetic field (the last empty circle in Figure 5.1(a)). In
this single-particle description the v = 2 phase diagram is thus finite, both as a function

of the magnetic field and the number of electrons. However, due to the small value of
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the Zeeman energy the predicted edge spin-flip transitions terminating the stability of the
v = 2 phase would take place at magnetic fields of hundreds of Tesla while such transitions
are observed experimentally for fields of order of a few Tesla. This discrepancy is due to
my assumption of the absence of interactions. Our paper is devoted to understanding how
the direct and exchange Coulomb interactions as well as electronic correlations modify
the phase diagram of the system.

Let us start the analysis by considering the system in the lowest-Landau-level ap-
proximation (LLL). I write the wave function of the v = 2 phase as a product of two

spin-polarised droplets:

N-—1 N-1
IGS2N)) = I coms 11 my10)- (5.3)
m=0 m=0

The total energy of the v = 2 state is calculated as the expectation value (GS(2N)|H|GS(2N))
of the many-body Hamiltonian (3.2) analysed in Chapter 3. Now the particles are quasi-
electrons dressed in interactions, and for further discussion it is convenient to define the
selfenergy 3(n,m, o), measuring the total interaction energy of the electron on orbital

(n,m, o) with all other electrons:

N-1
Y(n,m,0) = Y (2(nm,0m'|V]0m', nm) — (nm, 0m'|V |nm, 0m')). (5.4)

m/=0
Note that in this case this selfenergy does not depend on spin.
The centre and edge spin-flip configurations can now be expressed as excitations from
the v = 2 state |GS). The wave function and corresponding energy of the centre config-

uration is
IC(2N)) = ¢y co,v-1)4|GS(2N)); (5.5)
EC) = E,2+Q,—(N-1)Q_—FE,
+ X(1,0) = %(0,N —1) —(0,(N —1);1,0|V|1,0;0, (N —1)). (5.6)

The energy E(C) is calculated with respect to the energy E,_o of the v = 2 configuration.

One quasielectron with spin up is taken off from the orbital (0, N — 1), and therefore the
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appropriate orbital energy and selfenergy has to be subtracted from F,_, . Then this
quasielectron is put on the orbital (1,0), and the orbital energy and selfenergy corre-
sponding to this orbital has to be added. Further the spin of the particle is flipped, which
results in the gain of Zeeman energy. The last term is the vertex correction, accounting
for the attractive interaction of the quasielectron with the quasihole, which was created
by removing the particle from the droplet.

As for the edge configuration, the corresponding wave function and energy are created

in an analogous way:

|[E(2N)) = cin, cov-1)1/GS(2N)), (5.7)
E(E) = E,y+Q_ —E,

+ 2(0,N) —%(0,N — 1) — (0, (N = 1);0, N|V|0, N;0, (N — 1)). (5.8)

Both these energies indicate that the spin-flip transitions take place as a result of
the competition between the single-particle orbital energy and the interaction energy.
For example, the interactions favour the edge spin-flip phase, because the edge spin-flip
transition leads to (i) a redistribution of the last electron leading to a decrease of the direct
repulsive Coulomb term, and (ii) an increase of the spin of the system, which leads to an
increase of the exchange term, additionally lowering the energy. This is why in the case
of the edge spin-flip transition the interactions play a role similar to that of the Zeeman
energy in the noninteracting picture, but are strong enough to cause this transition in the
magnetic fields of order of several Tesla. In the case of the centre spin-flip configuration
the interplay of energies is more complicated: the spin is flipped, gaining the exchange
energy, but the electron is put in the centre of the dot, which increases the Coulomb
repulsion. The net result of this interplay drives the spin-flip transition to lower magnetic
fields.

In order to be able to address the experimental spectra one needs to calculate the

electrochemical potential of the 2N-electron droplet: u(2N) = E(2N + 1) — E(2N). To
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this end I also need to find the phase diagram of the 2/N + 1-electron droplet. I do that
by treating the extra particle as a quasielectron added to the state |GS(2N)) of the 2N-
electron droplet. This allows to calculate the energies of the system in a simple way,
analogous to that described above.

For the 2N + 1-electron system I focus on a phase analogous to the v = 2, built out
of the spin-singlet configuration for 2N particles as presented in Figure 5.1 (b), with the
extra electron spin down on the next available orbital on the lowest Landau level (in
this case, the orbital (n,m) = (0,4)). As the magnetic field is lowered, this unpaired
electron is transferred to the central orbital (n,m) = (1,0) of the second Landau level
(without the spin flip). On the other hand, as the magnetic field is increased, the last
edge electron with spin up (the electron on the orbital (0, N); in Fig. 5.1 this electron
occupies the orbital (0,3)) is transferred over the unpaired electron to the orbital (0, 5),
and its spin is flipped. This transition leaves the system in a state with three unpaired
spin-down electrons at the edge. These transitions occur at magnetic fields different than
those corresponding to the centre and edge spin-flips of the 2/N-electron droplet. As a
result, the electrochemical potential (2N) calculated as a function of the magnetic field
is expected to exhibit a characteristic pattern of kinks. This pattern is indeed measured
experimentally.

To improve the understanding of the role of direct and exchange Coulomb interactions,
the 2N-electron droplet is analysed using the spin- and space-restricted Hartree-Fock
approach, as described in Section 3.2. For the v = 2 phase the variational Hartree-Fock

wave function is written as

N—-1

|GS 2N H H aOmUCOmU + al ,m—+1, Jci—m—f—l a)|0) (59)

o m=0

i.e., the Hartree-Fock orbitals is constructed with definite angular momentum and spin
out of the single-particle states from the two lowest Landau levels. The minimisation of
the expectation value (GS(2N)|H|GS(2N)) with respect to the variational parameters a

is written as an eigenvalue problem of the Hartree-Fock Hamiltonian within each angular
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momentum and spin channel. The Hartree-Fock matrix is of order of 2x2, and is composed
of the diagonal orbital energy terms, and both diagonal and offdiagonal self-consistent
Hartree-Fock fields. A similar variational wave function is also constructed for the edge
configuration |E(2N)) and the centre configuration |C(2N)), in the latter case allowing
for the mixing of the second-Landau-level centre orbital (1,0) with the orbital (2, 1) from
the third Landau level. To calculate the phase diagram in this approximation, I compare
the total energies calculated self-consistently for each of these three configurations as a
function of the magnetic field and the number of electrons.

Finally, I attempt to account for the effects of electronic correlations. I do that using
three different approaches: (i) single quasielectron-quasihole pair excitations from the
Hartree-Fock v = 2 ground state, (ii) the exact diagonalisation, and (iii) the spin density
functional theory.

AsT have discussed in Section 3.3, the first approach involves calculating self-consistently
the Hartree-Fock ground state GS(2N)) as expressed in Eq. (5.9), and use the optimal

variational coefficients to construct the new creation and annihilation operators A™, A,

such that
_ 1) *(1)
Ai|—la = Gy C(J)rla +a, +1,Uci|—,l+1,m (5.10)
_ *2) *(2)
A;—la = Gy C(J)rla + a’l,l—l—l,oci'—,l—{—l,a' (5.11)

The two sets of coefficients a are obtained in the eigenvalue problem of the Hartree-Fock
Hamiltonian for each angular momentum and spin channel, even if the channel does not
contain any electrons. Further the many-body Hamiltonian is rotated from the basis
of operators ¢*, ¢ to the basis of operators AT, A. The next step is to construct the
basis set by distributing the quasiparticles on the Hartree-Fock orbitals. Here the basis is
restricted to contain single quasielectron-quasihole pairs only, and therefore this basis set
is composed of states of the type Ay 514wy |V = 2)up. Note that in this way one only
generates the electron-hole pair triplet excitations on the two lowest Landau levels. I am

interested in the triplet states only, since both the centre and edge spin-flip configurations
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are spin triplets. My pair excitations have a definite angular momentum L,_o + 41,
where L,_o is the angular momentum of the v = 2 state. Therefore I can group my
pair excitations into subsets according to their angular momentum, and diagonalise the
Hamiltonian matrix in each subset separately. Using this technique I am able to calculate
the phase diagram of the electronic droplet containing even 30 electrons.

In the full exact diagonalisation approach I distribute my electrons on the single-
particle orbitals, without rotating them into the Hartree-Fock basis. I generate all possible
configurations of 2V electrons on two Landau levels, for all allowed values of total spin,
and for total angular momenta from L, — 5 to L,—5 + 5. Unfortunately now the total
size of the basis, even after resolving the total angular momentum, total spin, and the
projection of total spin, is so large that I am only able to analyse the magnetic field
evolution of the system with 6 and 8 electrons.

The third approach to include correlations is the spin density functional theory in
the local spin density approximation. Due to its effective single-particle character this
approach allows to construct the phase diagram of the system for an arbitrary number
of electrons. To remain consistent with the two other treatments in the calculation the
Kohn-Sham orbitals are constructed only from the single-particle states belonging to the
two lowest Landau levels.

In Figure 5.2 T present the phase diagrams of the v = 2 phase as a function of the
number of electrons and magnetic field calculated using the five methods: the LLL ap-
proximation, the Hartree-Fock method on two Landau levels, the single quasielectron-
quasihole pair excitations, the exact diagonalisation, and the SDFT. All phase diagrams
were prepared using the GaAs material parameters assuming the same parabolic confine-
ment energy hwy = 6 meV. This is the central result of this work. In each diagram the
v = 2 phase is stable only over a finite region of magnetic fields. Also, the four methods
capable of treating large electron numbers reveal the existence of a critical number of elec-

trons V., beyond which the v = 2 phase is not stable for any magnetic field. Differences
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between the phase diagrams lie only in positions of phase boundaries.

The LLL approximation predicts the occurrence of both spin-flip transitions at mag-
netic fields lower than those obtained with the other methods. This can be understood
considering the fact that the spin flips are driven by interactions. In the LLL method
the interactions were particularly strong, since the Hilbert space for each phase consisted
of only one configuration. Other methods involved either self-consistent renormalisation
of electronic orbitals (Hartree-Fock and SDFT) or writing the total wave function as a
linear combination of many Slater determinants (single-pair excitations and exact diago-
nalisation). As a result, the electrons were allowed to redistribute in order to lower their
repulsive Coulomb energy. This shifted the spin-flip transitions to larger magnetic fields.

Let us now compare the result of the Hartree-Fock method, accounting for the Coulomb
direct and exchange interactions only, to that of the single-pair excitation approach, which
partially includes the effects of correlations as well. The low-field phase boundary (i.e.,
the centre spin-flip) in both approaches is established by considering only one configura-
tion, since in the pair excitation approach only one quasielectron-quasihole pair could be
generated in the subspace of the centre spin-flip configuration. That is why the low-field
boundaries predicted by each method almost coincide. On the other hand, the edge spin-
flip state calculated in the pair excitation approach is correlated with the configurations
involving occupation of the second Landau level, while in the Hartree-Fock theory it is ap-
proximated again by one configuration only. The phase boundaries predicted by these two
approaches do not coincide; inclusion of correlations leads to an increase in stability range
of the v = 2 phase. This is confirmed by the results of exact diagonalisation for 6 and
8 electrons, and SDFT for up to 42 electrons. Note that the SDFT calculation predicts
a broader stability range of the spin-singlet phase towards higher magnetic fields than
that obtained by exact diagonalisation. This is due to a slight overestimation of exchange
effects in the SDF'T procedure with the variational space reduced to two Landau levels.

The regions of stability of the » = 2 phase obtained with the two approaches are much
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larger than those predicted by the Hartree-Fock theory, both in magnetic fields (SDFT
and exact diagonalisation) and in electron numbers (SDFT). Thus, electronic correlations
counteract the exchange, and this is due to the fact that the exchange effects lower only
the energy of the spin-polarised states, while correlation effects provide a mechanism to
decrease the ground-state energies for the spin-singlet configurations as well.

In experiments the phase diagram is mapped out by analysing the addition spectrum
obtained by measuring the electrochemical potential y(2N) = E(2N+1) — E(2N). T have
briefly presented this experimental procedure in Section 1.4. Such experiment is clearly
sensitive both to the initial state of the N-electron droplet and the final state of the N4 1-
electron droplet. As I have already discussed, the spin-flip transitions manifest themselves
in the addition spectra as series of kinks, and for low electron number it is possible to find
the kinks corresponding to the centre spin-flip and the edge spin-flip transitions. However,
for electron numbers larger than the critical number N, the v = 2 phase is no longer stable.
In this regime the centre-edge transition involves transfer of the spin-down electron from
the centre orbital on the second Landau level directly to the first unoccupied orbital at
the edge of the droplet (without spin flip). The experimental signature of this transition is
similar to the transition from the v = 2 phase to the edge configuration for lower electron
numbers, and the high-electron-number kinks appear as a continuation of the line of
v = 2-edge transitions. Therefore, the collapse of the v = 2 phase is not revealed in the
positions of the addition peaks. However, various alignments of stability regions can be
probed by the spin-polarised tunnelling current due to the spin blockade phenomenon. In
the experiment, the electrons tunnelling through the system are predominantly spin-down,
and the current cannot flow if the spin of the final state of the N + 1-electron droplet is
not equal to the spin of the initial state of the N-electron droplet plus one electronic spin
down. Therefore, changes of the order of phases from centre-v = 2-edge (triplet-singlet-
triplet) to centre-edge (triplet-triplet) are visible in the amplitude pattern of the addition

peaks: the sequence of amplitudes of peaks as a function of the magnetic field for 2N < N,
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is different than that for 2N > N.. The amplitude patterns of addition peaks is studied
as a function of the parameters of the system (Zeeman energy and electron number).
This amplitude reversal is almost not recovered if the approximation used overestimates
exchange or correlations. In such cases the phase boundaries of the ¥ = 2 and spin-triplet
phases are shifted, which leads to their misalignment with respect to the phases of the
N + 1-electron droplet. It is only when a proper balance between all interaction terms
is found (e.g., by using an enhanced Zeeman energy in the SDFT calculations) that the

reversal of amplitudes is obtained for a range of electron numbers.

5.2 Pairing of spin excitations in high magnetic fields

Up to now I have focused on the properties of the system of many electrons confined in
a parabolic quantum dot in the region of stability of the v = 2 spin-singlet phase. In
this Section I shall extend this discussion to higher magnetic fields. Research on this
subject is presented in the paper “Pairing of spin excitations in lateral quantum dots”, by
Marek Korkusinski, Pawel Hawrylak, Mariusz Ciorga, Michel Pioro-Ladriere and Andrew
S. Sachrajda, submitted for publication in Physical Review Letters. This publication is
an integral part of this thesis and is appended to the presented material.

I shall present the analysis on the model system of eight electrons in a parabolic
quantum dot. Let us first consider the magnetic-field evolution of the droplet within
the lowest-Landau-level approximation. I have already shown that there exists a range
of magnetic fields, in which the ground state of the system is the spin-singlet v = 2
state, shown schematically in Fig. 5.3 (a). As the magnetic field is increased, one sees
a transition to the edge spin-triplet configuration, or the first spin-flip phase, shown in
Fig. 5.3 (b). The value of the magnetic field corresponding to this transition is determined
by the competition of the orbital energy, decreasing with the increase of the field, against

Coulomb direct and exchange interactions, which increase with the field. If the magnetic
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Figure 5.3: Charge distribution corresponding to the v = 2 phase (a), the first spin-flip
configuration (b), the correlated biexciton (c), the internal spin-flip phase (d) and the

second spin-flip configuration for an eight-electron parabolic dot
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field is increased even further, one observes the second spin-flip transition - a transition
from the configuration (b) to the configuration (e) in Fig. 5.3. As a result of this transition
the droplet becomes even more spin-polarised (the second spin-flip phase has total spin
2), which increases the exchange energy, and the electrons are redistributed farther apart
from one another, lowering the direct Coulomb repulsion. This sequence of spin flips
continues until the dot becomes completely spin-polarised (this is the so-called maximum
density droplet).

Note that the angular momentum of the first spin-flip configuration (b) is larger than
that of the v = 2 phase by one: Ligr = L,—5 + 1, and the angular momentum of the
second spin-flip configuration (e) is Losr = L,—o + 4. As can be seen, the sequence of
spin flips predicted just by considering the direct and exchange interactions leaves the
subspaces with angular momenta L,_, + 2 and L,—5 + 3 unexplored.

I have analysed these unexplored subspaces within a simple exact-diagonalisation
scheme, and found that by distributing the eight electrons on the single-particle orbitals of
the lowest Landau level one can generate several electronic configurations with these an-
gular momenta: there exist three singlet and two triplet configurations with L = L,y +2
and five singlet and five triplet configurations with L = L, _5+3. The Hamiltonian matrix
is diagonalised in these spin- and angular momentum-resolved basis sets. The resulting
eigenstates are found have correlated character. In the subspace with L = L,_, + 2 there
are more singlets than triplets, and this correlation advantage causes the lowest singlet
state to have lower energy than the lowest triplet. In the subspace with L = L,_5 + 3, on
the other hand, the numbers of configurations with either spin are equal, and singlets do
not have the correlation advantage. As a result, the lowest eigenstate of the Hamiltonian
in this subspace is a spin triplet, since, being more spin-polarised, it has the exchange
advantage over the singlets.

When the eigenenergies in the two subspaces are compared to the energies of the v = 2,

first, and second spin-flip configurations, it turns out that for some regions of magnetic
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fields the correlations lower the energies of the new states sufficiently for them to become
ground states of the system.

Thus one obtains a new phase diagram, with two new phases occurring between the
first and second spin-flip transitions. The distribution of the electronic charge of the first
new correlated phase on the single-particle orbitals is shown in Fig. 5.3(c). It is a spin
singlet, and it exhibits a spin-biexcitonic character, since its charge distribution clearly
expresses a signature of a double hole below the v = 2 Fermi energy, and double electron
above it. The second correlated phase, whose charge distribution is shown in Fig. 5.3(d),
is a spin-triplet, and is predicted to become the ground state of the system just before
the second spin flip. This phase can be described as a spin flip in the interior of the
spin-biexciton phase. The last transition in the sequence is the second spin-flip, which
terminates the correlated phases, and brings the system back to the weakly correlated
ground state (e) in Fig. 5.3.

Note that the analysis accounting only for the direct and exchange interactions pre-
dicted a steplike increase of the total spin of the system: from the singlet v = 2 phase,
through the triplet first spin-flip configuration, to the second spin-flip state with S = 2.
Inclusion of correlations leads to the appearance of low-spin phases, having a correla-
tion advantage over the high-spin configurations. As a result, the total spin exhibits an
oscillatory character as a function of the magnetic field.

In Figure 5.4 I show the phase diagram of the even-electron system as a function of the
magnetic field and the number of electrons. As I have shown earlier, the v = 2 phase has
a finite stability region both in the magnetic field and in the number of electrons. For all
the electron numbers for which v = 2 is stable I find a similar progression of phases as the
magnetic field is increased: the v = 2 phase becomes unstable against the first spin-flip
transition, which, in turn, is followed by the correlated biexciton, and finally the second
spin-flip. The spin biexciton is stable even for very large electron numbers (of order of

30). In the phase diagram, I also find the correlated internal spin-flip phase, however it
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has a much smaller region of stability (this phase is no longer present for the number of
electrons N > 12). Thus, both correlated phases should be visible in the experimental
addition spectra measured for a QD with a sufficiently low number of electrons. The
experimental evidence for the correlated phases is indeed found in the results of recent
measurements of A.S. Sachrajda and his group at the NRC Institute for Microstructural
Sciences. They have measured the addition spectra of the eighth electron into the seven-
electron quantum dot in the high source-drain voltage mode. As discussed in Section 1.4,
in this mode one can map not only the ground, but also the excited states of the system.
The signatures of correlated phases in the vicinity of the second spin-flip are indeed found,
and, to the best of my knowledge, this is the first experimental observation of correlated
phases in a quantum dot with known and precisely controlled number of electrons. The
correlated phases appear first as excited states, descend in energy with the increase of the

magnetic field, and then some of them briefly become the ground states of the system.



Chapter 6

Correlations in a coupled

quantum-dot molecule

In the two previous Chapters I have discussed the manifestations of correlations in a
system of N electrons confined by a parabolic quantum dot. In this Chapter I shall move
on to considering correlation effects in more complicated systems, composed of electrons
and holes confined in self-assembled quantum dots.

My approach to the electronic systems involved distributing the electrons on the single-
particle levels of the parabolic potential and analysing how the configurations thus created
are coupled by Coulomb interactions of the carriers. I demonstrated that the strength of
interactions relative to characteristic single-particle energies could be tuned by changing
either the confinement energy €2y or the external magnetic field. Such tuning is more diffi-
cult in the case of SADs. In Section 2.2 T have shown that for these structures the orbital
energy quantisation is so strong that even the magnetic fields of magnitudes of order of 10
T modify the spectra only slightly. The only way of influencing the ratio of single-particle
orbital to interaction energies is thus the manipulation of the QD confinement. In this

Chapter I shall move from weakly to strongly interacting systems not by changing €y of
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a single QD, but by changing the separation between two coupled quantum disks.

A schematic diagram of the system of two vertically coupled quantum disks is presented
in Fig. 6.1 (a). The disks have the same height H and are horizontally aligned in such a
way that they share the axis of rotational symmetry. The disk radii are denoted as R;
(bottom disk) and R, (top disk); in general, Ry # R,. Each disk is formed on a thin
wetting layer, and the thickness of the tunnelling barrier between disks is controlled by
the distance D between these layers. The quantum-mechanical coupling between the two
dots leads to formation of quantum-dot molecular orbitals analogous to those found in
diatomic molecules. Energies corresponding to these orbitals are sensitive to the distance
between dots, and therefore by tuning the distance D one can tune the single-particle

energy spectrum of the system.

6.1 Single-particle states of the QD molecule

Before I can consider the system of many particles confined in the double-dot molecule,
I first have to analyse its single-particle energy spectrum. This analysis is presented
in the paper “Electronic structure of vertically stacked self-assembled quantum disks”,
published by M. Korkusinski and P. Hawrylak in Physical Review B, vol. 63, page 195311
(2001). This publication is an integral part of this thesis and is appended to the presented
material. Here I shall summarise its most important points.

Let us start with a simple model of a single electron confined by the molecule composed
of two identical disks. Let us also assume that the single-particle energy spectrum of each
individual disk consists of a single orbital, whose energy will be denoted as E;. Since the
disks are identical, the energy FE of the top disk is equal to that of the bottom disk. In
the absence of interdisk tunnelling, the electron can occupy either the bottom disk (say,
disk 0) or the top disk (disk 1). Its state can therefore be labelled by the quantum-dot

layer index, or isospin: |0) or |1).
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Figure 6.1: (a) Schematic picture of the vertically coupled double-dot molecule; (b) il-
lustration of effective potentials in the adiabatic calculation of electronic states for the
vertical motion (left-hand panel) and for the planar motion (right-hand panel) (see text

for details)
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Let us now include the tunnelling. The Hamiltonian of this simple double-dot molecule

written in the basis of the isospin states takes the form

1
H =Y Eyxie—tlcfa + c¢f ), (6.1)
=0
or, in a matrix form,
E, —t
H = . (6.2)
-t E

Diagonalisation of this simple matrix yields the molecular eigenstates and eigenenergies:
the symmetric (or bonding) orbital |+) = % (|0 + |1)) with energy E, = E, — t, and
the antisymmetric (or antibonding) orbital |—) = % (|0) — |1)) with energy E, = E; +t.
These energy levels are split by 2¢, and the value of this splitting depends on the thickness
of the tunnelling barrier between disks, measured by the QD layer distance D. If D is
large, the tunnelling matrix element ¢ is small, and the two molecular orbitals are nearly
degenerate. On the other hand, if D is decreased, then the splitting between the energies
E. increases.

Let us now present a more realistic calculation for a pair of coupled self-assembled InAs
quantum disks embedded in the GaAs barrier material. The calculation is done within
the effective mass approximation. The single-particle Hamiltonian of the system, written
in cylindrical coordinates and in the effective units of energy and length (Section 2.2)

takes the form:
N 1 0 0 0? 0?
H=-5 (WE*@) — 5zt V), (6.3)

where V (r, z) is the double-disk potential.

In Sections 2.2 and 2.3 I have considered similar Hamiltonians, with the quantum
disk and quantum ring confinement potentials, and I assumed that these potentials have
barriers of infinite height. In the case of the quantum disk this assumption led to the
separation of the Hamiltonian into two operators: one describing the vertical motion, and
the other - the lateral motion of the particle. The two resulting Schrédinger equations

could be then solved analytically.
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But in order to account for the quantum-mechanical coupling in my double-disk system
I need to consider a potential V' (r, z) whose walls are of finite height. This complicates the
analysis in that now the Hamiltonian (6.3) is not separable into two operators, and the
corresponding Schrodinger equation cannot be solved analytically even at zero magnetic
field. To gain insight into the properties of the single-particle spectrum of the double-disk
potential without resorting to numerical treatment, we have proposed a semi-analytical
adiabatic approximation, involving an artificial separation of the motion in z direction
from the motion in the plane. This method is fast and portable, and allows to obtain
energies and wave functions of bound states as a function of the distance between disks
with minimal computational effort even if the disks are not identical (they can vary both
in width and radius).

In the adiabatic approximation the electronic wave functions are sought in the follow-

ing form:

(1,0, 2) = ¢12_7rm0 x g¥(2) % f2(1). (6.4)

The first term in this formula is the angular wave function. Isolating it from the rest of the
total wave function is not an approximation, since the system is rotationally symmetric,
and all electronic orbitals have a well-defined angular momentum m. The approximate
character of the method lies in writing the rest of the wave function ¢ in the form of a
product of the function g dependent on the z coordinate and the function f dependent on
the radial coordinate. The Schrdodinger equation constructed with the Hamiltonian (6.3)

and the wave function as above can be formally separated into two coupled equations:

[—3‘9—; +V(r, z)] ¢’(2) = E,g'(2), (6.5)
H_? (aiai _ m)] () = (B B0, (6.6)

Let us now describe how the two equations were solved.
The equation (6.5) is solved first. It describes the vertical motion of an electron in the

potential V(r, z) for a given value of the radial coordinate r. In Figure 6.1 (a) and (b) I
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show that, depending on the coordinate r, one deals with three different potentials V' (r, 2):
if r < R; I have two wide quantum wells, each of width equal to the height H of the disk
plus the width W of the wetting layer; if Ry < r < Ry I have one wide well, corresponding
to the top disk, and one narrow well, corresponding to the wetting layer, and finally for
r > Ry I have a double-well structure composed of the two wetting layers. I solve for the
motion of the electron in each of these cases using the transfer-matrix method, described
in detail in the paper. For further analysis I retain two lowest energies, F, = E; and
E, = E; and the two corresponding orbitals ¢° and g'. The energy E; is the energy
of the symmetric solution, corresponding to the bonding quantum-molecular orbital, and
the energy F; is the antisymmetric solution, corresponding to the antibonding quantum-
molecular orbital. The corresponding wave functions in each radial region are drawn in the
left-hand panel of Fig. 6.1 (b). Their symmetric and antisymmetric character is apparent
in the first region, where the confining potential is a pair of identical quantum wells. In
the second region the potential is no longer symmetric, and therefore here the bonding
and antibonding orbitals do not have a definite symmetry. This symmetry is restored in
the third region, when I again deal with two identical quantum wells. However here the
wells are narrow, and only the bonding orbital is confined.

The energies E, are different in each region. Out of them I build the effective potential
E,(r) for the lateral motion of the electron, which is illustrated in the right-hand panel
of Fig. 6.1(b). This effective potential is built for each subband v separately and inserted
into the equation (6.6). The radial equation for each subband is solved using the transfer-
matrix method, presented in detail in the paper. The energies E obtained as a result of
the calculation form the single-particle spectrum of the system.

The adiabatic effective-mass approximation requires two parameters as input: the
effective mass m* of the carrier and the depth V4 of the confining potential V' (r, z). They
determine how many bound states there are in the single-particle spectrum, and how

sensitive this spectrum is to the change of the interdisk distance. Thus I need to establish
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the parameters m* and V; for existing double-dot system:s.

In Chapter 1 I have described the techniques of fabrication of stacked InAs disks
embedded in the GaAs barrier material. The depth of confinement V4 in such systems
is determined by the alignment of band edges of the constituent materials. If the bulk
properties of GaAs and InAs is used, the conduction band edge of the dot material is about
1 eV below the conduction band edge of the barrier, and the confinement in the degenerate
heavy- and light-hole subbands of the valence band is of order of 85 meV. However, strain
present in the system modifies these confinement depths dramatically: the confinement
of electrons is in reality of order of 600 meV. Moreover, the hole subbands are split, the
heavy-hole confinement is enhanced, and the light-hole confinement is decreased. The
strain-induced modifications to the confinement potential can be calculated using the
Bir-Pikus formalism [21]. I will show the results of such calculations below.

The effective mass m* of the carriers is also influenced by the strain, but in the
framework of the effective mass approximation we are not able to assess this influence
quantitatively. Therefore the effective mass is treated as the fitting parameter in the
electronic calculations, and it can be adjusted to obtain agreement with more sophisticated
microscopic calculations or with the experiment.

Let us now demonstrate how the presence of strain can be accounted for in the cal-
culations of electronic structure of the system. This discussion is presented briefly in the
paper; here I shall provide some supplementary details [56].

Let us start by calculating the distribution of strain in my system. The strain is due
to the mismatch of lattice constants of the dot and barrier materials; in this InAs/GaAs
system this mismatch is of order of 7%. The degree of strain is quantitatively described

with strain tensor matrix elements

lr) = 5 (ag;(;) 4 61;33(:)) , (6.7)

where u(r) is a vector describing the displacement of a small element of the system at

coordinate r from its equilibrium position. The distribution of these strain elements in
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this system can be calculated using several methods (for reviews see Refs. [56, 99]). I use

the continuous elasticity theory, in which the total elastic energy of the system is written

as
1
E = /dgr {ECH(I‘) (€2, + 62;,63;.«) + Cra(r) (ExuEyy + E2a€rz T Eyyiz)
+ 2Cu(el, +eh.60,) — ago(Eas + €4y + szz)} . (6.8)
Here Ci;, Cis, and Cy4 are the material-specific elastic constants, and ey = (agpt —

Uparrier) | Gparrier 18 the relative difference between the lattice constants a of the dot and
the barrier, respectively. The parameter o = C1; 4+ 2C15 in the dot material, and zero in
the barrier. The calculation of strain distribution involves discretising the system on a
grid of points and minimising the above total elastic energy with respect to displacements
of grid nodes u(r). In the paper (Figure 3 (a), (b), (c), and (d)), I show, respectively,
the distributions of the strain matrix elements e,,, €y, €,,, and the hydrostatic strain
En = Egg + Eyy + €,, On the vertical plane through the centre of both disks assuming
the disk radii Ry = 8 nm, Ry = 8.5 nm, disk thicknesses H = 2 nm and the QD layer
distance D = 4 nm. To supplement this presentation, I show again the distribution of the
hydrostatic strain €, = €44 + €4y + €, and the biaxial strain e = ¢,, — %(sm +&yy) in
Figure 6.2 (a) and (b), respectively. From Fig. 6.2 one can see that as we move along the
symmetry axis through the centre of both disks, the hydrostatic strain remains negative
(compressive) throughout, but the sign of the biaxial strain changes on the dot-barrier
interfaces: it is positive inside the disks and negative in the barrier.

As the unit cell of the crystal is deformed by strain, the bond lengths and angles change,
and this in turn influences the band structure. The attempt to describe this effect within
the -  formalism was undertaken by Bir and Pikus [21] for the diamond-type lattices.

Bahder [12] extended their approach to the zinc-blende binary semiconductor alloys using
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the Lowdin perturbation theory and obtained the following eight-band k- p Hamiltonian:

Al 0 —v* 0 —V/3v V2u U —V/2v*
0 QcER V2u V3v* 0 v V2w —Uu
—v V2u —p4+gq —s* r 0 3/2s  —V2¢
i 0 V3v —s —-p—yq 0 r —/2r 1/2s
strain — y
—V/3v* 0 r* 0 -p—gq s* 1/2s*  /2r*
V2u v* 0 r* s —p+q V2¢ 3/2s*
U —V2v* ([3/25* —2r* \J1/25  \V2q  —auep 0
—v2v —u —v/2q 1/2s*  /2r 3/2s 0 —QyE}
(6.9)
where
P = Qy&p,
1
q = b [5zz - 5(5w$ + Syy):| ’
3
r = gb(sw — Eyy) — idegy,
s = —d(egy —igy,),
7
u = ———=PFPyY £,:0;,
/3 ; 79j
1
v = =——F—=Py ) (45 — igy;)0;, (6.10)
/6 ; j i) 0j

with the parameters a., a,, b and d being the material-dependent deformation potentials,
and P, being the imaginary valence-conduction band coupling.

The above formula is written in the notation of Pryor et al. [99]. I can use it to
calculate the local band edge profiles at each point of the grid used previously in the
strain calculations. To this end, however, one can set the parameters u and v to zero, as
I am only interested in the band structure at the I' point of the Brillouin zone. Then,
from Eq. (6.9) one can easily see that the conduction band is not coupled to the valence
band, and that the strain-induced modification of the conduction band edge consists only

of a shift proportional to the hydrostatic strain. The valence band, on the other hand, is
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much more complicated. I will focus here mainly on understanding the diagonal elements
of the matrix Hgyqi,. It can be readily seen that all heavy- and light-hole band edges
are shifted by —p, which is proportional to the hydrostatic strain. Further, the strain
introduces a splitting between the heavy and light hole band edges equal to 2¢g, if the
off-diagonal elements are disregarded. As can be seen from Eq. (6.10), the parameter g
is proportional to the biaxial strain, and depends on the deformation potential b, which
is negative for most semiconductors. That means that if the biaxial strain is negative
(compressive), the heavy hole band edge will lie above the light hole band edge (i.e., from
the viewpoint of the holes, the heavy hole band will have a lower energy). If the biaxial
strain is positive, the situation is reversed.

Now I input the calculated distributions of strain tensor matrix elements into the Bir-
Pikus Hamiltonian (6.9) and, for each point of the structure, diagonalise it numerically to
obtain the strain-modified profiles of band edges. The result of these calculations is shown
in Fig. 6.3. This figure is similar to the Figure 4 from the paper and differs only in the
valence band. Figure 6.3 indicates that the edge of the heavy-hole subband (green line)
crosses the edge of the light-hole subband (blue line) at all dot-barrier interfaces. This is
the correct picture; the assignment of bands in Figure 4 from the paper is erroneous. The
crossing of light-hole and heavy-hole band edges is due to the fact that the biaxial strain
changes sign at the barrier dot interfaces. Since the biaxial strain controls the splitting
between the heavy- and light-hole bands, the change of sign of this strain component leads
to the reversal of bands. This effect has also been reported, e.g., in Ref. [112].

The strain calculations coupled to the Bir-Pikus formalism suggest that the parameter
Vo in my InAs/GaAs system is reduced to 600 meV. Using this confinement depth and
treating the effective mass m* as a fitting parameter, the electronic spectra were fitted to
those obtained with a similar system within the eight-band k - p formalism. As a result
of this fitting, the electronic effective mass was found to be m* = 0.053 my.

With the adiabatic effective mass approximation fully defined and parametrised I
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have calculated the electronic spectra of the vertically coupled double-disk InAs/GaAs
molecule. The spectrum for the double-disk structure with radii of Ry = 8 nm, Ry = 8.5
nm and height of each disk of H = 2 nm is shown in Fig. 6.4. Due to the finite depth of the
confinement potential there are only a few bound electronic states. These states possess
a new characteristic property due to the double-dot potential: they are either symmetric
or antisymmetric in the direction along the axis of rotational symmetry. These symmetry
properties are analogous to those of bonding and antibonding states in diatomic molecules.
The energies of these states change as a function of the distance between disks, as shown in
Fig. 6.4. At large interdisk distances the symmetric and antisymmetric states associated
with the same radial and angular modes (i.e., characterised by the same quantum numbers
n and m) are almost degenerate - one deals essentially with two uncoupled quantum disks.
Small splittings between these levels are due to the fact that the disks are not identical.
Of course, for each vertical symmetry I find the ladder of levels with different quantum
numbers n and m, as I did in the case of the single disk in Section 2.2.

As the two disks are shifted closer together, the tunnelling through the interdisk
barrier causes the symmetric and antisymmetric states to split. This splitting increases
exponentially as the distance between disks is decreased, and can become as large as the
energy gap between two adjacent shells of each disk (which is of order of 30 meV), so that
a symmetric state of, say, the p shell can become degenerate with the antisymmetric state
of the s shell (this situation corresponds to the QD layer distance of 45 A). Thus I deal
with a situation distinctly different from that of the single disk: there, the vertical energy
quantisation introduced the largest energy scale of the system; here this energy scale is
typically the smallest. For all interdisk distances the ladder of lateral modes built on top
of each vertical mode exhibits the shell structure characteristic for the disk confinement
(I covered it in detail in Section 2.2).

In the paper we also discuss the case of nonzero magnetic field, however, unlike in

Section 2.2 for a single quantum disk, the field is now perpendicular to the axis of rota-
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tional symmetry. We have chosen this alignment, since, as I have shown in Section 2.2,
the magnetic field aligned in parallel to the rotational axis has relatively little effect on
the spectrum even at fields of order of 10 T. The second reason is the fact that the mag-
netic field directed perpendicularly to the rotational axis couples the symmetric and the
antisymmetric states, and can lead to anticrossing of shells which originally had opposite
symmetries. This is clearly seen in Figure 7 in the paper, where we show this anticrossing
behaviour as a function of the interdisk distance e.g., for the antisymmetric s shell and
the symmetric p shell (the anticrossing is seen for the distance between disks of 45 A, i.e.,

at the point where at zero magnetic field the two states cross).

6.2 Entangled states of an electron-hole complex in

the QD molecule

Let us now discuss the properties of a single electron-hole pair confined in the double-disk
quantum molecule. I focus on discussing the structure of the states of the electron-hole
pair in the context of entanglement, being a special kind of particle-particle correlations.

The results of this work were published in the paper “Entangled states of electron-hole
complex in a single InAs/GaAs coupled quantum dot molecule”, by Marek Korkusinski,
Pawel Hawrylak, Manfred Bayer, Gerhard Ortner, Alfred Forchel, Simon Fafard, and
Zbigniew Wasilewski, published in Physica E, vol. 13, page 610 (2002). This publication
is an integral part of this thesis and is appended to the presented material.

The notion of entanglement is of particular importance in quantum computing, where
the information is stored in quantum bits. Quantum phenomena must be also used to
process this information, and the simplest object capable of doing so is the quantum logic
gate. The operation of such gate relies on the existence of entangled states of constituent

qubits, i.e., states which cannot be obtained by individual qubit rotation. If I were to
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change the state of one qubit in the entangled system, I would nontrivially affect the state
of the entire system.

In the paper, we have proposed a model of a quantum logic gate composed of two
qubits - an electron and a hole - confined in a vertically coupled pair of disk-shaped self-
assembled quantum dots. Since we deal with an electron-hole pair - an exciton, such a
system can be examined optically - by the photoluminescence experiment. My goal is to
predict the luminescence spectra of the exciton and, in these spectra, find features proving
the existence of entangled states.

In this simple analysis, I return to my original description of the single-particle molec-
ular orbitals in the language of isospin states, and assume that the two quantum disks are
identical. In the absence of the interdisk tunnelling, the particle can be localised either
on the bottom disk (isospin state |0)) or on the top disk (isospin state |1)), and these
states are identified as the states of the qubit. Tunnelling through the barrier between
disks leads to mixing of isospin states, i.e., rotation of the qubit. One observes the forma-
tion of molecular orbitals |+) = % (]0) £ 1)) and their energies Ey are split by 2¢. The
tunnelling matrix element ¢ is the only free parameter; its value for each interdot distance
can be easily established from the single-particle spectra calculated using the adiabatic
effective-mass approximation.

Let us now introduce the second qubit - the hole - into the system, and let us assume
for the moment that the two carriers do not interact. In the absence of the tunnelling, the
wave function of the pair can be written as a product of the isospin states of each qubit
separately. There are four possible configurations: |0)¢|0)p, |1)e|1)n, [0)e|1)n, and [1)¢|0)p.
Upon the inclusion of tunnelling the qubits will rotate independently, and now the exact
wave functions of the system can be written as [+)e[+)s = 3 (|0)e + [1)e) (|0} + [1)1),
and analogously |—)e|—)n, [+)e|—)n and |=)¢|+)n. Thus, the total wave function of the
system can be written as a simple product of the electron wave function and the hole

wave function, which means that the qubits are not entangled.
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Inclusion of the electron-hole Coulomb interaction changes this picture: now the qubits
are no longer independent. The Hamiltonian of the system of two interacting qubits in
the basis of the quantum-molecular orbitals takes the form:
H =Y Eicici+ Y Ehihi — > (ij|VIkl)c] hf hyay, (6.11)
i i ijkl
where the index 7 = + or —, similarly j, k, and [, and the operators h; (h;) create (anni-
hilate) a hole on the orbital ¢. I construct the basis set out of configurations created by dis-
tributing the electron and hole on the molecular orbitals: {|+)e|+)n, |—)el—=)ns [+)el=)ns [=)el+)n-}-
In a PL experiment only the two first states, i.e., |[+)¢|+)n and |—).|—), can be addressed
optically due to their symmetry; the two remaining states with mixed symmetry are dark.

In this basis the Hamiltonian matrix takes the form

Eip+ Vg Vig— 0 0
V__ E__+V____ 0 0
H= i (6.12)
0 0 B+ Voo Vo4

(details of calculations of the Coulomb matrix elements are given in the paper). This
matrix has a block-diagonal form, because the Coulomb interaction mixes only states
with the same overall symmetry. In particular, the Hamiltonian matrix does not mix the
optically active states with the dark states, and in what follows I will only focus on the

top left-hand segment of the matrix,

H, = Eiv + Vs Vig—- ' (6.13)
| Z—— E _+V_ ___
Upon diagonalisation of this simple matrix I obtain the optically active eigenstates of the

system of two interacting qubits. If recast in terms of the isospin states, they can be

written as

@) = 01([0)e]0)n + [L)e[1)n) + Br([0)e])n + [1)e[O)n), (6.14)

0) = 4(|0)e|0)n + [1)el1)n) + Ba(l0)e[1)n + [1)e|O)n)- (6.15)
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Thus, the states of the pair of interacting qubits cannot be written as simple products
of the states of individual qubits, and so the Coulomb electron-hole interaction leads to
entanglement of my qubits. The energies corresponding to these two wave functions are
composed of orbital and interaction terms. Without interactions the splitting between
them would be equal to £, — E__, and, for large interdisk distances D, would approach
zero. However, due to the off-diagonal matrix element V., __, which changes only weakly
with the interdisk distance, the energies of the two optically active states will be split
even for large D. This splitting is thus the signature of the entangled states of my qubits.
Since both eigenstates, |a) and |b), are optically active, the splitting should be visible in
the photoluminescence experiment.

The PL experiment on the InAs/GaAs quantum-disk molecules with varying interdisk
distance was performed by the group of Alfred Forchel and Manfred Bayer at Wiirzburg
University. The author of this Thesis, not being involved in the measurements, refers the
reader interested in the experimental details to the attached paper. Here let us only state
that the splitting of the PL lines due to the recombination of excitons on states |a) and
|b) is indeed observed even for the interdisk separations as large as 8 nm. To the best of
my knowledge, this is the first successful observation of the PL spectra of an entangled

electron-hole pair confined in a double-disk quantum-dot molecule.



Chapter 7

Negatively charged exciton on a

quantum ring

The last system I am going to consider is the electron-hole system confined in a quantum
ring. The results of the treatment of a single electron, an exciton and a negatively charged
exciton in the quantum-ring potential and in an external magnetic field can be found in
two papers: “Negatively charged exciton on a quantum ring”, by Marek Korkusinski,
Pawel Hawrylak, and Manfred Bayer, published in Physica Status Solidi (b), vol. 234,
page 274 (2002), and “Optical detection of the Aharonov-Bohm effect on a charged particle
in a nanoscale quantum ring”, by Manfred Bayer, Marek Korkusinski, Pawel Hawrylak,
Thomas Gutbrod, M. Michel, and Alfred Forchel, published in Physical Review Letters,
vol. 90, page 186801 (2003). Both these publications are integral parts of this thesis and
are appended to the presented material.

In Section 2.3 I have described the single-particle energy spectrum of a single electron
confined in a quantum ring, and subject to an external magnetic field directed along
the axis of rotational symmetry of the system. I have shown that the single-particle

ground-state energy exhibits Aharonov-Bohm oscillations as a function of the number of

176
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flux quanta threading the ring. In this Chapter I consider the behaviour of an electron-
hole pair (a single exciton) and a complex composed of two electrons and one hole (a
negatively charged exciton, X ) confined in such ring. I show that correlations between
particles may lead to measurable effects, manifesting themselves in a complete or partial
suppression of the Aharonov-Bohm oscillations in the total energy of these systems.

As in Section 2.3, I assume that the ring is infinitesimally thin and narrow, which
allows to describe the motion of each particle just by one coordinate (the angle ¢). The
ring is therefore fully characterised by its radius R, and, as I will show, the single-particle
energy and the Coulomb interactions scale differently with R: for small rings the single-
particle (orbital) energy quantisation dominates, while for large rings the behaviour of
the system is strongly affected by interactions. I analyse the properties of the systems in
both regimes.

I start the analysis with a single exciton. I write the Schrodinger equation of the
system using the centre-of-mass and relative coordinates, which reduces the two-body

problem to two single-body problems:

Vel _ia_z (7.1)
oM IMxR2 0¢%, .
A B2 ( 9 )2 e2 1
H., = —i + Ny | — . 7.2
! 2#R2 a¢rel ¢ 2R€ \/d2 + Sin2(¢7‘el/2) ( )

Here Mx = m.+my, is the total mass of the exciton, p = memy/(m.+my,) is the reduced
mass of the relative particle, and the parameter d is introduced to account for the finite
width of the ring and to prevent the Coulomb interactions from diverging. Ny is the
number of flux quanta threading the ring; its definition was given in Section 2.3.

As can be seen from Eq. (7.1), the motion of the centre-of-mass particle is not affected
by the magnetic field, as is expected, considering the fact that the exciton as a whole
is a charge-neutral object. The energy of the centre-of-mass particle does not exhibit
the Aharonov-Bohm oscillations, and does not carry any signature of the electron-hole

interactions.
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On the other hand, the orbital energy operator of the relative particle (first term in
Eq. (7.2)) is that of a single charged particle with the reduced mass p. It conserves the
angular momentum k of the relative particle, and via its quadratic dependence on the
number of flux quanta N, it introduces the Aharonov-Bohm oscillations to the energy
spectrum of the particle. The relative Hamiltonian (7.2) also contains the Coulomb term,
introducing a residual attractive potential of a fixed point charge. This potential mixes the
states of the relative particle with different angular momenta, and thus leads to averaging
out of the Aharonov-Bohm oscillations in the spectrum. Thus, the behaviour of the
particle in the magnetic field depends on the relative strength of these two terms. I study
the energy spectrum of the exciton in the regime of both weak and strong interactions
using the exact diagonalisation method in the basis of states {|k)} of the relative particle,
where the angular momentum £ = —10, -9, ..., 10.

For small disks, the single-particle (orbital) energy quantisation dominates and the
symmetry breaking introduced by the Coulomb term is weak. The energy of the relative
particle, and thus also the total energy of the exciton, exhibits Aharonov-Bohm oscilla-
tions. Thus, in this regime, the electron and the hole move almost independently, and
the oscillations of each carrier add to produce Aharonov-Bohm oscillations of the total
energy of the system.

For large disks, the interactions dominate the energy landscape of the system. The
Coulomb term in the relative Hamiltonian strongly couples the configurations with differ-
ent angular momenta, which causes the oscillations to be averaged out. The total energy
of the system changes monotonically with the magnetic field (exhibits the diamagnetic
shift). In this regime the electron and the hole are strongly correlated and move as one,
charge-neutral object.

In analysing the negatively charged exciton X, composed of two electrons and one
hole moving on the ring, I use a similar formalism of centre-of-mass and relative coor-

dinates. In these coordinates the Hamiltonian of the system separates into the centre-
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of-mass Hamiltonian, composed only of the orbital energy operator, and the relative

Hamiltonian, describing the motion of two interacting relative particles:

h? 0 i
= — (=i N, '
Heor ST ( Za¢CM + ¢) ; (7.3)
. 2 p2 ( ) )2 ¢’ L
Ha = 3 5 | ~igg t V) —
l z:zl 2uR?\ 94 ° 2B \ [ + sin*(¢,/2)

N e? 1 +h2 (_i6><_i8)
2Re \/dz + sin?((¢r — ¢2)/2) mp, R? 01 0o
20 K
1+ 20 2uR? No.

(7.4)

where 0 = me/my, and M = 2m, + my, is the mass of the entire X~ complex. I solve
for the centre-of-mass motion analytically, and use an exact diagonalisation approach to
analyse the motion of relative particles.

Since now the entire complex carries an effective negative electron charge, the centre-
of-mass particle is charged as well. That is why the centre-of-mass Hamiltonian contains
terms dependent upon the magnetic field, and the single-particle (orbital) energy of the
centre-of-mass particle exhibits Aharonov-Bohm oscillations. However, the amplitude of
these oscillations is small compared to that of a single electron because of the large mass
M of the centre-of-mass particle.

As for the two relative particles, they are light and charged, and they move in the
additional residual attractive potential of a fixed point charge, similar to the one obtained
in the case of the exciton. The particles interact via Coulomb potential and a pairwise
momentum interaction, appearing as a result of the transformation of the system’s kinetic
energy operator into relative coordinates. The last term in the relative Hamiltonian is
proportional to N(g and contributes to the diamagnetic shift.

The single-particle orbital energy operators for the relative particles introduce the
Aharonov-Bohm oscillations. Both pairwise interaction terms conserve the total angular
momentum of the pair, and therefore do not lead to the suppression of these oscillations.

However, the residual single-body attractive potential mixes the states of the pair with
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different angular momenta, and can lead to the suppression of the oscillations, similarly
as it did in the case of the single exciton. Quantitative calculations for the pair of relative
particles are carried out using the configuration-interaction method, in the basis of con-
figurations |k ko) created as Slater determinants of single-particle orbitals with definite
angular momentum. To optimise the basis, I rotate the set constructed with configura-
tions to the set consisting of eigenvectors of the total spin operator. Since I deal with two
particles only, this rotation allows to separate the spin singlet and spin triplet states, and
to perform the exact diagonalisation in each subspace separately.

Based on this analysis, I find that the total energy of the X~ complex always oscillates
in the magnetic field, but, depending on the disk radius, these oscillations can have
larger or smaller amplitude. For small disks the symmetry breaking introduced by the
residual potential in the relative Hamiltonian is small, the three particles move almost
independently, and their total energy oscillates with a large amplitude. On the other
hand, for large disks the configurations of relative particles are strongly mixed, and their
oscillations average out. The total energy is modulated only weakly by oscillations of the
heavy centre-of-mass particles, and exhibits the diamagnetic shift. In this case, the X~
complex is composed of strongly correlated particles and moves in the magnetic field as
one object.

Since both the exciton and the X~ are composed of carriers of both types, the electron-
hole recombination process can occur resulting in an emission of one photon, which can
be further detected. As I discussed in Section 1.4, the energy of this photon is equal to
the difference between the initial state (before the recombination) and the final state of
the system (after the recombination). In this way, one can directly measure the energy
of the exciton, but in the case of the X~ one will detect the energy difference between
the total energy of the complex and the energy of the final-state electron. These energies
have indeed been measured experimentally by means of photoluminescence spectroscopic

techniques. The ring used in the experiment was large enough for the system to be



CHAPTER 7. NEGATIVELY CHARGED EXCITON ON A QUANTUM RING 181

in the strongly interacting regime, where, as I have explained, the excitonic complexes
are expected to behave as strongly correlated entities. This behaviour is indeed seen
in the experimental data. The photoluminescence line attributed to the single exciton
on the ring exhibits only a diamagnetic shift as a function of the magnetic field while
the line attributed to the X~ complex is strongly modulated. Since in this regime the
oscillations of the total energy of X~ are almost suppressed, the modulation seen in
the experiment can only be due to the final state electron. This is confirmed by the
characteristic shape of the photoluminescence trace, similar to the inverted sequence of
single-electron oscillations. Thus, one directly observes the Aharonov-Bohm oscillations
of a single electron, which is possible due to the correlated character of the initial-state

X~ complex.



Chapter 8

Conclusions

In this Thesis T have presented an overview of the field of research on electronic corre-
lations in nanostructures. I have started with a general introduction to quantum dots
and compared their fundamental properties to those of natural atoms. I have shown that
both classes of systems - (QDs and natural atoms - possess many common characteristics
to the extent that the QDs are often called “artificial atoms”. However, these two sys-
tems exhibit several important differences, and perhaps the most important of them in the
context of correlations is the strong atomic quantisation of single-particle (orbital) energy
contrasted with much weaker, and tunable, QD confinement. This soft QD confinement
allows to build confined systems, in which the quantisation of orbital energy introduces
the same energy scale as Coulomb carrier-carrier interactions. For this reason, theoretical
and experimental study of properties of QDs allows to gain insight into the correlated
behaviour of strongly interacting carriers.

To introduce the reader into the subject of QD physics and technology, I have pre-
sented the most important methods of fabrication of QDs. I have divided these methods
into three groups. In the first technique the lateral confinement is created electrostatically
by means of gates, locally depleting the two-dimensional gas. Such dots allow to study

electronic systems only. Another technique, utilising the Stranski-Krastanow phase tran-
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sition in the epitaxial growth of heterostructures, yields dots with relatively small sizes,
capable of confining both electrons and holes. Both types of carriers can be also confined
in quantum rings, fabricated by lithography and etching. I have also summarised the
most important experimental techniques used to probe the properties of many-particle
systems confined in QDs.

But the main focus of this thesis is a fundamental research into the properties of
correlated systems confined in nanostructures. I started my detailed discussion of these
properties by defining mathematical methods and computational tools used in my work.
I described the single-particle spectra of several idealised confinement potentials, approx-
imating the actual QD systems, and used these spectra as an input in the many-body
problem.

The problem of many interacting particles confined in the lateral confining potential of
nanostructures was defined in the language of fermion creation and annihilation operators.
To be complete, this formulation requires the single-particle spectrum, established before,
and also the Coulomb scattering matrix elements. These elements have been calculated
analytically in the case of the two-dimensional parabolic lateral confinement.

Further I have discussed the possible mathematical and computational methods that
could be used to solve the many-body problem. I needed a method capable of treating
the correlation effects on equal footing with the direct and exchange Coulomb interac-
tions. I have reviewed three such methods, the exact diagonalisation technique, the spin
density functional theory and the quantum diffusion Monte Carlo approach. However,
for my research I have chosen the exact-diagonalisation configuration-interaction method,
because only this method allows to obtain ezact description of the system, albeit only for
relatively small number of particles.

In my detailed description of the configuration-interaction approach, I have described
how the symmetries of the system could be exploited in order to reduce the size of the

many-particle basis set and achieve greater computational accuracy. I have also shown
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that special tools are needed in order to diagonalise these optimised, but still very large
Hamiltonian matrices. My tool of choice was the conjugate gradient minimisation tech-
nique combined with the spectrum folding method. By use of this computational tool I
could find the ground and several lower excited states of matrices with size of order of
105 x 10° and larger, i.e., objects so large that they could not be stored all at once in the
computer memory.

Having completely defined the many-body problem and the methods of solving it T have
analysed the correlation effects in parabolic quantum dots with or without the magnetic
fields, containing electrons only, and coupled quantum dot and quantum ring systems
confining both electrons and holes. My presentation of this material was comprised of a
series of articles, integrated into the text.

In my analysis of parabolic many-electron quantum dots, I have carefully distinguished
the effects due to electronic correlations from those brought about by the direct and
exchange Coulomb terms. I showed that the latter terms favourize more spin-polarised
systems, and are counteracted by correlations whose essence lies in configuration mixing.
This is due to the fact that the low-spin subspaces usually have much larger basis sets than
the high-spin ones, and therefore acquire a correlation advantage additionally lowering
their energy. This correlation advantage can lead not only to shifts in phase boundaries of
the system, but also to the appearance of entirely new phases whose presence is verified by
experimental data. In particular, I have demonstrated the composite nature of the second
spin-flip transition in the eight-electron droplet. I have shown that in the evolution of the
system with the magnetic field, the region of stability of the second-spin-flip configuration
is preceded by strongly correlated, spin-unpolarised phases. This prediction was confirmed
experimentally in the high source-drain voltage tunnelling spectroscopy. This was - to the
best of my knowledge - the first experimental observation of correlated states in electronic
QDs with known and controlled number of electrons in the presence of a magnetic field.

Further I have analysed the electron-hole systems. I have shown that the Coulomb
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interactions between an electron and a hole confined in a vertically coupled double-disk
structure lead to the entanglement of states of the two carriers, which can be viewed
as a particular manifestation of correlations. I have also shown that the electron-hole
correlations strongly influence the behaviour of an exciton and a charged exciton on a
quantum ring, and may lead to the suppression of Aharonov-Bohm oscillations of their
energy. As a result, the photoluminescence spectrum of the charged complex is dominated
by the energy of the final state electron. This allows to observe the Aharonov-Bohm

oscillations of a single electron directly in the photoluminescence spectra.
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